update Qlearning
This commit is contained in:
@@ -5,11 +5,10 @@ Author: John
|
|||||||
Email: johnjim0816@gmail.com
|
Email: johnjim0816@gmail.com
|
||||||
Date: 2020-09-11 23:03:00
|
Date: 2020-09-11 23:03:00
|
||||||
LastEditor: John
|
LastEditor: John
|
||||||
LastEditTime: 2021-03-11 19:16:27
|
LastEditTime: 2021-03-12 16:48:25
|
||||||
Discription:
|
Discription:
|
||||||
Environment:
|
Environment:
|
||||||
'''
|
'''
|
||||||
from functools import update_wrapper
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import math
|
import math
|
||||||
import torch
|
import torch
|
||||||
@@ -53,11 +52,11 @@ class QLearning(object):
|
|||||||
import dill
|
import dill
|
||||||
torch.save(
|
torch.save(
|
||||||
obj=self.Q_table,
|
obj=self.Q_table,
|
||||||
f=path,
|
f=path+"Qleaning_model.pkl",
|
||||||
pickle_module=dill
|
pickle_module=dill
|
||||||
)
|
)
|
||||||
|
|
||||||
def load(self, path):
|
def load(self, path):
|
||||||
'''从文件中读取数据到 Q表格
|
'''从文件中读取数据到 Q表格
|
||||||
'''
|
'''
|
||||||
self.Q_table =torch.load(f='prod_dls.pkl',pickle_module=dill)
|
import dill
|
||||||
|
self.Q_table =torch.load(f=path+'Qleaning_model.pkl',pickle_module=dill)
|
||||||
@@ -5,7 +5,7 @@ Author: John
|
|||||||
Email: johnjim0816@gmail.com
|
Email: johnjim0816@gmail.com
|
||||||
Date: 2020-09-11 23:03:00
|
Date: 2020-09-11 23:03:00
|
||||||
LastEditor: John
|
LastEditor: John
|
||||||
LastEditTime: 2021-03-11 19:22:50
|
LastEditTime: 2021-03-12 16:52:26
|
||||||
Discription:
|
Discription:
|
||||||
Environment:
|
Environment:
|
||||||
'''
|
'''
|
||||||
@@ -15,101 +15,101 @@ sys.path.append(os.getcwd()) # 添加当前终端路径
|
|||||||
import argparse
|
import argparse
|
||||||
import gym
|
import gym
|
||||||
import datetime
|
import datetime
|
||||||
from QLearning.plot import plot
|
|
||||||
from QLearning.utils import save_results
|
|
||||||
from envs.gridworld_env import CliffWalkingWapper, FrozenLakeWapper
|
from envs.gridworld_env import CliffWalkingWapper, FrozenLakeWapper
|
||||||
from QLearning.agent import QLearning
|
from QLearning.agent import QLearning
|
||||||
|
from common.plot import plot_rewards
|
||||||
|
from common.utils import save_results
|
||||||
|
|
||||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
|
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
|
||||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
|
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
|
||||||
|
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||||||
|
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||||||
|
os.mkdir(SAVED_MODEL_PATH)
|
||||||
|
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
|
||||||
|
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
|
||||||
|
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||||||
|
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||||
|
os.mkdir(RESULT_PATH)
|
||||||
|
|
||||||
def get_args():
|
class QlearningConfig:
|
||||||
'''训练的模型参数
|
|
||||||
'''
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
'''训练相关参数'''
|
'''训练相关参数'''
|
||||||
parser.add_argument("--n_episodes", default=500,
|
def __init__(self):
|
||||||
type=int, help="训练的最大episode数目")
|
self.n_episodes = 200 # 训练的episode数目
|
||||||
'''算法相关参数'''
|
self.gamma = 0.9 # reward的衰减率
|
||||||
parser.add_argument("--gamma", default=0.9,
|
self.epsilon_start = 0.99 # e-greedy策略中初始epsilon
|
||||||
type=float, help="reward的衰减率")
|
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||||
parser.add_argument("--epsilon_start", default=0.99,
|
self.epsilon_decay = 200 # e-greedy策略中epsilon的衰减率
|
||||||
type=float, help="e-greedy策略中初始epsilon")
|
self.lr = 0.1 # 学习率
|
||||||
parser.add_argument("--epsilon_end", default=0.01,
|
|
||||||
type=float, help="e-greedy策略中的结束epsilon")
|
|
||||||
parser.add_argument("--epsilon_decay", default=200,
|
|
||||||
type=float, help="e-greedy策略中epsilon的衰减率")
|
|
||||||
parser.add_argument("--lr", default=0.1, type=float, help="学习率")
|
|
||||||
config = parser.parse_args()
|
|
||||||
return config
|
|
||||||
def train(cfg,env,agent):
|
def train(cfg,env,agent):
|
||||||
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||||||
# env = FrozenLakeWapper(env)
|
# env = FrozenLakeWapper(env)
|
||||||
rewards = [] # 记录所有episode的reward,
|
rewards = [] # 记录所有episode的reward
|
||||||
|
ma_rewards = [] # 滑动平均的reward
|
||||||
steps = [] # 记录所有episode的steps
|
steps = [] # 记录所有episode的steps
|
||||||
for i_episode in range(cfg.n_episodes):
|
for i_episode in range(cfg.n_episodes):
|
||||||
ep_reward = 0 # 记录每个episode的reward
|
ep_reward = 0 # 记录每个episode的reward
|
||||||
ep_steps = 0 # 记录每个episode走了多少step
|
ep_steps = 0 # 记录每个episode走了多少step
|
||||||
obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||||||
while True:
|
while True:
|
||||||
action = agent.choose_action(obs) # 根据算法选择一个动作
|
action = agent.choose_action(state) # 根据算法选择一个动作
|
||||||
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
|
next_state, reward, done, _ = env.step(action) # 与环境进行一次动作交互
|
||||||
# 训练 Q-learning算法
|
agent.update(state, action, reward, next_state, done) # Q-learning算法更新
|
||||||
agent.update(obs, action, reward, next_obs, done) # 不需要下一步的action
|
state = next_state # 存储上一个观察值
|
||||||
obs = next_obs # 存储上一个观察值
|
|
||||||
ep_reward += reward
|
ep_reward += reward
|
||||||
ep_steps += 1 # 计算step数
|
ep_steps += 1 # 计算step数
|
||||||
if done:
|
if done:
|
||||||
break
|
break
|
||||||
steps.append(ep_steps)
|
steps.append(ep_steps)
|
||||||
|
rewards.append(ep_reward)
|
||||||
# 计算滑动平均的reward
|
# 计算滑动平均的reward
|
||||||
if rewards:
|
if ma_rewards:
|
||||||
rewards.append(rewards[-1]*0.9+ep_reward*0.1)
|
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||||
else:
|
else:
|
||||||
rewards.append(ep_reward)
|
ma_rewards.append(ep_reward)
|
||||||
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
|
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
|
||||||
plot(rewards)
|
return rewards,ma_rewards
|
||||||
if not os.path.exists(SAVED_MODEL_PATH):
|
|
||||||
os.mkdir(SAVED_MODEL_PATH)
|
|
||||||
agent.save(SAVED_MODEL_PATH+'Q_table.pkl') # 训练结束,保存模型
|
|
||||||
'''存储reward等相关结果'''
|
|
||||||
save_results(rewards,tag='train',result_path=RESULT_PATH)
|
|
||||||
|
|
||||||
def eval(cfg,env,agent):
|
def eval(cfg,env,agent):
|
||||||
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||||||
# env = FrozenLakeWapper(env)
|
# env = FrozenLakeWapper(env)
|
||||||
rewards = [] # 记录所有episode的reward,
|
rewards = [] # 记录所有episode的reward
|
||||||
|
ma_rewards = [] # 滑动平均的reward
|
||||||
steps = [] # 记录所有episode的steps
|
steps = [] # 记录所有episode的steps
|
||||||
for i_episode in range(20):
|
for i_episode in range(cfg.n_episodes):
|
||||||
ep_reward = 0 # 记录每个episode的reward
|
ep_reward = 0 # 记录每个episode的reward
|
||||||
ep_steps = 0 # 记录每个episode走了多少step
|
ep_steps = 0 # 记录每个episode走了多少step
|
||||||
obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||||||
while True:
|
while True:
|
||||||
action = agent.choose_action(obs) # 根据算法选择一个动作
|
action = agent.choose_action(state) # 根据算法选择一个动作
|
||||||
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
|
next_state, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||||||
obs = next_obs # 存储上一个观察值
|
state = next_state # 存储上一个观察值
|
||||||
ep_reward += reward
|
ep_reward += reward
|
||||||
ep_steps += 1 # 计算step数
|
ep_steps += 1 # 计算step数
|
||||||
if done:
|
if done:
|
||||||
break
|
break
|
||||||
steps.append(ep_steps)
|
steps.append(ep_steps)
|
||||||
|
rewards.append(ep_reward)
|
||||||
# 计算滑动平均的reward
|
# 计算滑动平均的reward
|
||||||
if rewards:
|
if ma_rewards:
|
||||||
rewards.append(rewards[-1]*0.9+ep_reward*0.1)
|
ma_rewards.append(rewards[-1]*0.9+ep_reward*0.1)
|
||||||
else:
|
else:
|
||||||
rewards.append(ep_reward)
|
ma_rewards.append(ep_reward)
|
||||||
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
|
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
|
||||||
plot(rewards)
|
return rewards,ma_rewards
|
||||||
'''存储reward等相关结果'''
|
|
||||||
save_results(rewards,tag='eval',result_path=RESULT_PATH)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
cfg = get_args()
|
cfg = QlearningConfig()
|
||||||
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
||||||
env = CliffWalkingWapper(env)
|
env = CliffWalkingWapper(env)
|
||||||
n_actions = env.action_space.n
|
n_actions = env.action_space.n
|
||||||
agent = QLearning(n_actions,cfg)
|
agent = QLearning(n_actions,cfg)
|
||||||
train(cfg,env,agent)
|
rewards,ma_rewards = train(cfg,env,agent)
|
||||||
eval(cfg,env,agent)
|
agent.save(path=SAVED_MODEL_PATH)
|
||||||
|
# eval(cfg,env,agent)
|
||||||
|
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||||||
|
plot_rewards(rewards,ma_rewards,tag="train",algo = "On-Policy First-Visit MC Control",path=RESULT_PATH)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,35 +0,0 @@
|
|||||||
#!/usr/bin/env python
|
|
||||||
# coding=utf-8
|
|
||||||
'''
|
|
||||||
Author: John
|
|
||||||
Email: johnjim0816@gmail.com
|
|
||||||
Date: 2020-10-07 20:57:11
|
|
||||||
LastEditor: John
|
|
||||||
LastEditTime: 2020-10-07 21:00:29
|
|
||||||
Discription:
|
|
||||||
Environment:
|
|
||||||
'''
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import seaborn as sns
|
|
||||||
import numpy as np
|
|
||||||
import os
|
|
||||||
|
|
||||||
def plot(item,ylabel='rewards'):
|
|
||||||
sns.set()
|
|
||||||
plt.figure()
|
|
||||||
plt.plot(np.arange(len(item)), item)
|
|
||||||
plt.title(ylabel+' of Q-learning')
|
|
||||||
plt.ylabel(ylabel)
|
|
||||||
plt.xlabel('episodes')
|
|
||||||
plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png")
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
|
|
||||||
output_path = os.path.dirname(__file__)+"/result/"
|
|
||||||
rewards=np.load(output_path+"rewards_train.npy", )
|
|
||||||
MA_rewards=np.load(output_path+"MA_rewards_train.npy")
|
|
||||||
steps = np.load(output_path+"steps_train.npy")
|
|
||||||
plot(rewards)
|
|
||||||
plot(MA_rewards,ylabel='moving_average_rewards')
|
|
||||||
plot(steps,ylabel='steps')
|
|
||||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 18 KiB |
BIN
codes/QLearning/results/20210312-165244/ma_rewards_train.npy
Normal file
BIN
codes/QLearning/results/20210312-165244/ma_rewards_train.npy
Normal file
Binary file not shown.
BIN
codes/QLearning/results/20210312-165244/rewards_curve_train.png
Normal file
BIN
codes/QLearning/results/20210312-165244/rewards_curve_train.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 34 KiB |
BIN
codes/QLearning/results/20210312-165244/rewards_train.npy
Normal file
BIN
codes/QLearning/results/20210312-165244/rewards_train.npy
Normal file
Binary file not shown.
Binary file not shown.
BIN
codes/QLearning/saved_model/20210312-165244/Qleaning_model.pkl
Normal file
BIN
codes/QLearning/saved_model/20210312-165244/Qleaning_model.pkl
Normal file
Binary file not shown.
@@ -1,22 +0,0 @@
|
|||||||
#!/usr/bin/env python
|
|
||||||
# coding=utf-8
|
|
||||||
'''
|
|
||||||
Author: John
|
|
||||||
Email: johnjim0816@gmail.com
|
|
||||||
Date: 2020-11-23 13:44:52
|
|
||||||
LastEditor: John
|
|
||||||
LastEditTime: 2021-03-11 19:18:34
|
|
||||||
Discription:
|
|
||||||
Environment:
|
|
||||||
'''
|
|
||||||
import os
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
def save_results(rewards,tag='train',result_path='./result'):
|
|
||||||
'''保存reward等结果
|
|
||||||
'''
|
|
||||||
if not os.path.exists(result_path): # 检测是否存在文件夹
|
|
||||||
os.mkdir(result_path)
|
|
||||||
np.save(result_path+'rewards_'+tag+'.npy', rewards)
|
|
||||||
print('results saved!')
|
|
||||||
Reference in New Issue
Block a user