更新算法模版
@@ -0,0 +1,25 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
eval_per_episode: 5
|
||||
load_checkpoint: true
|
||||
load_path: Train_CartPole-v1_DQN_20221031-001201
|
||||
max_steps: 200
|
||||
mode: test
|
||||
save_fig: true
|
||||
seed: 0
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
hidden_dim: 256
|
||||
lr: 0.0001
|
||||
target_update: 4
|
||||
@@ -0,0 +1,14 @@
|
||||
2022-10-31 00:13:43 - r - INFO: - n_states: 4, n_actions: 2
|
||||
2022-10-31 00:13:44 - r - INFO: - Start testing!
|
||||
2022-10-31 00:13:44 - r - INFO: - Env: CartPole-v1, Algorithm: DQN, Device: cuda
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 1/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 2/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 3/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 4/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 5/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 6/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 7/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 8/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 9/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 10/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Finish testing!
|
||||
|
After Width: | Height: | Size: 25 KiB |
@@ -0,0 +1,11 @@
|
||||
episodes,rewards,steps
|
||||
0,200.0,200
|
||||
1,200.0,200
|
||||
2,200.0,200
|
||||
3,200.0,200
|
||||
4,200.0,200
|
||||
5,200.0,200
|
||||
6,200.0,200
|
||||
7,200.0,200
|
||||
8,200.0,200
|
||||
9,200.0,200
|
||||
|
@@ -0,0 +1,23 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: Acrobot-v1
|
||||
load_checkpoint: false
|
||||
load_path: Train_CartPole-v1_DQN_20221026-054757
|
||||
max_steps: 100000
|
||||
mode: train
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 128
|
||||
buffer_size: 200000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
hidden_dim: 256
|
||||
lr: 0.002
|
||||
target_update: 4
|
||||
@@ -0,0 +1,104 @@
|
||||
2022-10-26 09:46:45 - r - INFO: - n_states: 6, n_actions: 3
|
||||
2022-10-26 09:46:48 - r - INFO: - Start training!
|
||||
2022-10-26 09:46:48 - r - INFO: - Env: Acrobot-v1, Algorithm: DQN, Device: cuda
|
||||
2022-10-26 09:46:50 - r - INFO: - Episode: 1/100, Reward: -861.00: Epislon: 0.178
|
||||
2022-10-26 09:46:50 - r - INFO: - Episode: 2/100, Reward: -252.00: Epislon: 0.111
|
||||
2022-10-26 09:46:50 - r - INFO: - Episode: 3/100, Reward: -196.00: Epislon: 0.078
|
||||
2022-10-26 09:46:51 - r - INFO: - Episode: 4/100, Reward: -390.00: Epislon: 0.041
|
||||
2022-10-26 09:46:52 - r - INFO: - Episode: 5/100, Reward: -371.00: Epislon: 0.025
|
||||
2022-10-26 09:46:52 - r - INFO: - Episode: 6/100, Reward: -237.00: Epislon: 0.019
|
||||
2022-10-26 09:46:52 - r - INFO: - Episode: 7/100, Reward: -227.00: Epislon: 0.016
|
||||
2022-10-26 09:46:53 - r - INFO: - Episode: 8/100, Reward: -228.00: Epislon: 0.014
|
||||
2022-10-26 09:46:53 - r - INFO: - Episode: 9/100, Reward: -305.00: Epislon: 0.012
|
||||
2022-10-26 09:46:54 - r - INFO: - Episode: 10/100, Reward: -234.00: Epislon: 0.011
|
||||
2022-10-26 09:46:54 - r - INFO: - Episode: 11/100, Reward: -204.00: Epislon: 0.011
|
||||
2022-10-26 09:46:55 - r - INFO: - Episode: 12/100, Reward: -277.00: Epislon: 0.010
|
||||
2022-10-26 09:46:55 - r - INFO: - Episode: 13/100, Reward: -148.00: Epislon: 0.010
|
||||
2022-10-26 09:46:56 - r - INFO: - Episode: 14/100, Reward: -372.00: Epislon: 0.010
|
||||
2022-10-26 09:46:56 - r - INFO: - Episode: 15/100, Reward: -273.00: Epislon: 0.010
|
||||
2022-10-26 09:46:56 - r - INFO: - Episode: 16/100, Reward: -105.00: Epislon: 0.010
|
||||
2022-10-26 09:46:56 - r - INFO: - Episode: 17/100, Reward: -79.00: Epislon: 0.010
|
||||
2022-10-26 09:46:57 - r - INFO: - Episode: 18/100, Reward: -112.00: Epislon: 0.010
|
||||
2022-10-26 09:46:57 - r - INFO: - Episode: 19/100, Reward: -276.00: Epislon: 0.010
|
||||
2022-10-26 09:46:57 - r - INFO: - Episode: 20/100, Reward: -148.00: Epislon: 0.010
|
||||
2022-10-26 09:46:58 - r - INFO: - Episode: 21/100, Reward: -201.00: Epislon: 0.010
|
||||
2022-10-26 09:46:58 - r - INFO: - Episode: 22/100, Reward: -173.00: Epislon: 0.010
|
||||
2022-10-26 09:46:58 - r - INFO: - Episode: 23/100, Reward: -226.00: Epislon: 0.010
|
||||
2022-10-26 09:46:59 - r - INFO: - Episode: 24/100, Reward: -154.00: Epislon: 0.010
|
||||
2022-10-26 09:46:59 - r - INFO: - Episode: 25/100, Reward: -269.00: Epislon: 0.010
|
||||
2022-10-26 09:46:59 - r - INFO: - Episode: 26/100, Reward: -191.00: Epislon: 0.010
|
||||
2022-10-26 09:47:00 - r - INFO: - Episode: 27/100, Reward: -177.00: Epislon: 0.010
|
||||
2022-10-26 09:47:00 - r - INFO: - Episode: 28/100, Reward: -209.00: Epislon: 0.010
|
||||
2022-10-26 09:47:00 - r - INFO: - Episode: 29/100, Reward: -116.00: Epislon: 0.010
|
||||
2022-10-26 09:47:00 - r - INFO: - Episode: 30/100, Reward: -117.00: Epislon: 0.010
|
||||
2022-10-26 09:47:01 - r - INFO: - Episode: 31/100, Reward: -121.00: Epislon: 0.010
|
||||
2022-10-26 09:47:01 - r - INFO: - Episode: 32/100, Reward: -208.00: Epislon: 0.010
|
||||
2022-10-26 09:47:01 - r - INFO: - Episode: 33/100, Reward: -147.00: Epislon: 0.010
|
||||
2022-10-26 09:47:02 - r - INFO: - Episode: 34/100, Reward: -104.00: Epislon: 0.010
|
||||
2022-10-26 09:47:02 - r - INFO: - Episode: 35/100, Reward: -161.00: Epislon: 0.010
|
||||
2022-10-26 09:47:02 - r - INFO: - Episode: 36/100, Reward: -144.00: Epislon: 0.010
|
||||
2022-10-26 09:47:02 - r - INFO: - Episode: 37/100, Reward: -131.00: Epislon: 0.010
|
||||
2022-10-26 09:47:03 - r - INFO: - Episode: 38/100, Reward: -226.00: Epislon: 0.010
|
||||
2022-10-26 09:47:03 - r - INFO: - Episode: 39/100, Reward: -117.00: Epislon: 0.010
|
||||
2022-10-26 09:47:03 - r - INFO: - Episode: 40/100, Reward: -344.00: Epislon: 0.010
|
||||
2022-10-26 09:47:04 - r - INFO: - Episode: 41/100, Reward: -123.00: Epislon: 0.010
|
||||
2022-10-26 09:47:04 - r - INFO: - Episode: 42/100, Reward: -232.00: Epislon: 0.010
|
||||
2022-10-26 09:47:04 - r - INFO: - Episode: 43/100, Reward: -190.00: Epislon: 0.010
|
||||
2022-10-26 09:47:05 - r - INFO: - Episode: 44/100, Reward: -176.00: Epislon: 0.010
|
||||
2022-10-26 09:47:05 - r - INFO: - Episode: 45/100, Reward: -139.00: Epislon: 0.010
|
||||
2022-10-26 09:47:06 - r - INFO: - Episode: 46/100, Reward: -410.00: Epislon: 0.010
|
||||
2022-10-26 09:47:06 - r - INFO: - Episode: 47/100, Reward: -115.00: Epislon: 0.010
|
||||
2022-10-26 09:47:06 - r - INFO: - Episode: 48/100, Reward: -118.00: Epislon: 0.010
|
||||
2022-10-26 09:47:06 - r - INFO: - Episode: 49/100, Reward: -113.00: Epislon: 0.010
|
||||
2022-10-26 09:47:07 - r - INFO: - Episode: 50/100, Reward: -355.00: Epislon: 0.010
|
||||
2022-10-26 09:47:07 - r - INFO: - Episode: 51/100, Reward: -110.00: Epislon: 0.010
|
||||
2022-10-26 09:47:07 - r - INFO: - Episode: 52/100, Reward: -148.00: Epislon: 0.010
|
||||
2022-10-26 09:47:08 - r - INFO: - Episode: 53/100, Reward: -135.00: Epislon: 0.010
|
||||
2022-10-26 09:47:08 - r - INFO: - Episode: 54/100, Reward: -220.00: Epislon: 0.010
|
||||
2022-10-26 09:47:08 - r - INFO: - Episode: 55/100, Reward: -157.00: Epislon: 0.010
|
||||
2022-10-26 09:47:09 - r - INFO: - Episode: 56/100, Reward: -130.00: Epislon: 0.010
|
||||
2022-10-26 09:47:09 - r - INFO: - Episode: 57/100, Reward: -150.00: Epislon: 0.010
|
||||
2022-10-26 09:47:09 - r - INFO: - Episode: 58/100, Reward: -254.00: Epislon: 0.010
|
||||
2022-10-26 09:47:10 - r - INFO: - Episode: 59/100, Reward: -148.00: Epislon: 0.010
|
||||
2022-10-26 09:47:10 - r - INFO: - Episode: 60/100, Reward: -108.00: Epislon: 0.010
|
||||
2022-10-26 09:47:10 - r - INFO: - Episode: 61/100, Reward: -152.00: Epislon: 0.010
|
||||
2022-10-26 09:47:10 - r - INFO: - Episode: 62/100, Reward: -107.00: Epislon: 0.010
|
||||
2022-10-26 09:47:10 - r - INFO: - Episode: 63/100, Reward: -110.00: Epislon: 0.010
|
||||
2022-10-26 09:47:11 - r - INFO: - Episode: 64/100, Reward: -266.00: Epislon: 0.010
|
||||
2022-10-26 09:47:11 - r - INFO: - Episode: 65/100, Reward: -344.00: Epislon: 0.010
|
||||
2022-10-26 09:47:12 - r - INFO: - Episode: 66/100, Reward: -93.00: Epislon: 0.010
|
||||
2022-10-26 09:47:12 - r - INFO: - Episode: 67/100, Reward: -113.00: Epislon: 0.010
|
||||
2022-10-26 09:47:12 - r - INFO: - Episode: 68/100, Reward: -191.00: Epislon: 0.010
|
||||
2022-10-26 09:47:12 - r - INFO: - Episode: 69/100, Reward: -102.00: Epislon: 0.010
|
||||
2022-10-26 09:47:13 - r - INFO: - Episode: 70/100, Reward: -187.00: Epislon: 0.010
|
||||
2022-10-26 09:47:13 - r - INFO: - Episode: 71/100, Reward: -158.00: Epislon: 0.010
|
||||
2022-10-26 09:47:13 - r - INFO: - Episode: 72/100, Reward: -166.00: Epislon: 0.010
|
||||
2022-10-26 09:47:14 - r - INFO: - Episode: 73/100, Reward: -202.00: Epislon: 0.010
|
||||
2022-10-26 09:47:14 - r - INFO: - Episode: 74/100, Reward: -179.00: Epislon: 0.010
|
||||
2022-10-26 09:47:14 - r - INFO: - Episode: 75/100, Reward: -150.00: Epislon: 0.010
|
||||
2022-10-26 09:47:14 - r - INFO: - Episode: 76/100, Reward: -170.00: Epislon: 0.010
|
||||
2022-10-26 09:47:15 - r - INFO: - Episode: 77/100, Reward: -149.00: Epislon: 0.010
|
||||
2022-10-26 09:47:15 - r - INFO: - Episode: 78/100, Reward: -119.00: Epislon: 0.010
|
||||
2022-10-26 09:47:15 - r - INFO: - Episode: 79/100, Reward: -115.00: Epislon: 0.010
|
||||
2022-10-26 09:47:15 - r - INFO: - Episode: 80/100, Reward: -97.00: Epislon: 0.010
|
||||
2022-10-26 09:47:16 - r - INFO: - Episode: 81/100, Reward: -153.00: Epislon: 0.010
|
||||
2022-10-26 09:47:16 - r - INFO: - Episode: 82/100, Reward: -97.00: Epislon: 0.010
|
||||
2022-10-26 09:47:16 - r - INFO: - Episode: 83/100, Reward: -211.00: Epislon: 0.010
|
||||
2022-10-26 09:47:16 - r - INFO: - Episode: 84/100, Reward: -195.00: Epislon: 0.010
|
||||
2022-10-26 09:47:17 - r - INFO: - Episode: 85/100, Reward: -125.00: Epislon: 0.010
|
||||
2022-10-26 09:47:17 - r - INFO: - Episode: 86/100, Reward: -155.00: Epislon: 0.010
|
||||
2022-10-26 09:47:17 - r - INFO: - Episode: 87/100, Reward: -151.00: Epislon: 0.010
|
||||
2022-10-26 09:47:18 - r - INFO: - Episode: 88/100, Reward: -194.00: Epislon: 0.010
|
||||
2022-10-26 09:47:18 - r - INFO: - Episode: 89/100, Reward: -188.00: Epislon: 0.010
|
||||
2022-10-26 09:47:18 - r - INFO: - Episode: 90/100, Reward: -195.00: Epislon: 0.010
|
||||
2022-10-26 09:47:19 - r - INFO: - Episode: 91/100, Reward: -141.00: Epislon: 0.010
|
||||
2022-10-26 09:47:19 - r - INFO: - Episode: 92/100, Reward: -132.00: Epislon: 0.010
|
||||
2022-10-26 09:47:19 - r - INFO: - Episode: 93/100, Reward: -127.00: Epislon: 0.010
|
||||
2022-10-26 09:47:19 - r - INFO: - Episode: 94/100, Reward: -195.00: Epislon: 0.010
|
||||
2022-10-26 09:47:20 - r - INFO: - Episode: 95/100, Reward: -152.00: Epislon: 0.010
|
||||
2022-10-26 09:47:20 - r - INFO: - Episode: 96/100, Reward: -145.00: Epislon: 0.010
|
||||
2022-10-26 09:47:20 - r - INFO: - Episode: 97/100, Reward: -123.00: Epislon: 0.010
|
||||
2022-10-26 09:47:20 - r - INFO: - Episode: 98/100, Reward: -176.00: Epislon: 0.010
|
||||
2022-10-26 09:47:21 - r - INFO: - Episode: 99/100, Reward: -180.00: Epislon: 0.010
|
||||
2022-10-26 09:47:21 - r - INFO: - Episode: 100/100, Reward: -124.00: Epislon: 0.010
|
||||
2022-10-26 09:47:21 - r - INFO: - Finish training!
|
||||
|
After Width: | Height: | Size: 55 KiB |
@@ -0,0 +1,101 @@
|
||||
episodes,rewards,steps
|
||||
0,-861.0,862
|
||||
1,-252.0,253
|
||||
2,-196.0,197
|
||||
3,-390.0,391
|
||||
4,-371.0,372
|
||||
5,-237.0,238
|
||||
6,-227.0,228
|
||||
7,-228.0,229
|
||||
8,-305.0,306
|
||||
9,-234.0,235
|
||||
10,-204.0,205
|
||||
11,-277.0,278
|
||||
12,-148.0,149
|
||||
13,-372.0,373
|
||||
14,-273.0,274
|
||||
15,-105.0,106
|
||||
16,-79.0,80
|
||||
17,-112.0,113
|
||||
18,-276.0,277
|
||||
19,-148.0,149
|
||||
20,-201.0,202
|
||||
21,-173.0,174
|
||||
22,-226.0,227
|
||||
23,-154.0,155
|
||||
24,-269.0,270
|
||||
25,-191.0,192
|
||||
26,-177.0,178
|
||||
27,-209.0,210
|
||||
28,-116.0,117
|
||||
29,-117.0,118
|
||||
30,-121.0,122
|
||||
31,-208.0,209
|
||||
32,-147.0,148
|
||||
33,-104.0,105
|
||||
34,-161.0,162
|
||||
35,-144.0,145
|
||||
36,-131.0,132
|
||||
37,-226.0,227
|
||||
38,-117.0,118
|
||||
39,-344.0,345
|
||||
40,-123.0,124
|
||||
41,-232.0,233
|
||||
42,-190.0,191
|
||||
43,-176.0,177
|
||||
44,-139.0,140
|
||||
45,-410.0,411
|
||||
46,-115.0,116
|
||||
47,-118.0,119
|
||||
48,-113.0,114
|
||||
49,-355.0,356
|
||||
50,-110.0,111
|
||||
51,-148.0,149
|
||||
52,-135.0,136
|
||||
53,-220.0,221
|
||||
54,-157.0,158
|
||||
55,-130.0,131
|
||||
56,-150.0,151
|
||||
57,-254.0,255
|
||||
58,-148.0,149
|
||||
59,-108.0,109
|
||||
60,-152.0,153
|
||||
61,-107.0,108
|
||||
62,-110.0,111
|
||||
63,-266.0,267
|
||||
64,-344.0,345
|
||||
65,-93.0,94
|
||||
66,-113.0,114
|
||||
67,-191.0,192
|
||||
68,-102.0,103
|
||||
69,-187.0,188
|
||||
70,-158.0,159
|
||||
71,-166.0,167
|
||||
72,-202.0,203
|
||||
73,-179.0,180
|
||||
74,-150.0,151
|
||||
75,-170.0,171
|
||||
76,-149.0,150
|
||||
77,-119.0,120
|
||||
78,-115.0,116
|
||||
79,-97.0,98
|
||||
80,-153.0,154
|
||||
81,-97.0,98
|
||||
82,-211.0,212
|
||||
83,-195.0,196
|
||||
84,-125.0,126
|
||||
85,-155.0,156
|
||||
86,-151.0,152
|
||||
87,-194.0,195
|
||||
88,-188.0,189
|
||||
89,-195.0,196
|
||||
90,-141.0,142
|
||||
91,-132.0,133
|
||||
92,-127.0,128
|
||||
93,-195.0,196
|
||||
94,-152.0,153
|
||||
95,-145.0,146
|
||||
96,-123.0,124
|
||||
97,-176.0,177
|
||||
98,-180.0,181
|
||||
99,-124.0,125
|
||||
|
@@ -0,0 +1,25 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
eval_per_episode: 5
|
||||
load_checkpoint: false
|
||||
load_path: tasks
|
||||
max_steps: 200
|
||||
mode: train
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
hidden_dim: 256
|
||||
lr: 0.0001
|
||||
target_update: 800
|
||||
@@ -0,0 +1,116 @@
|
||||
2022-10-31 00:12:01 - r - INFO: - n_states: 4, n_actions: 2
|
||||
2022-10-31 00:12:01 - r - INFO: - Start training!
|
||||
2022-10-31 00:12:01 - r - INFO: - Env: CartPole-v1, Algorithm: DQN, Device: cuda
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 1/100, Reward: 18.0, Step: 18
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 2/100, Reward: 35.0, Step: 35
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 3/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 4/100, Reward: 32.0, Step: 32
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 5/100, Reward: 16.0, Step: 16
|
||||
2022-10-31 00:12:04 - r - INFO: - Current episode 5 has the best eval reward: 15.30
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 6/100, Reward: 12.0, Step: 12
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 7/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 8/100, Reward: 15.0, Step: 15
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 9/100, Reward: 11.0, Step: 11
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 10/100, Reward: 15.0, Step: 15
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 11/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 12/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 13/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 14/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 15/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 16/100, Reward: 24.0, Step: 24
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 17/100, Reward: 8.0, Step: 8
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 18/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 19/100, Reward: 11.0, Step: 11
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 20/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 21/100, Reward: 12.0, Step: 12
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 22/100, Reward: 11.0, Step: 11
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 23/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 24/100, Reward: 21.0, Step: 21
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 25/100, Reward: 14.0, Step: 14
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 26/100, Reward: 12.0, Step: 12
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 27/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 28/100, Reward: 11.0, Step: 11
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 29/100, Reward: 12.0, Step: 12
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 30/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 31/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 32/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 33/100, Reward: 18.0, Step: 18
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 34/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 35/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 36/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 37/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 38/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 39/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 40/100, Reward: 8.0, Step: 8
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 41/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 42/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 43/100, Reward: 20.0, Step: 20
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 44/100, Reward: 16.0, Step: 16
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 45/100, Reward: 17.0, Step: 17
|
||||
2022-10-31 00:12:06 - r - INFO: - Current episode 45 has the best eval reward: 17.50
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 46/100, Reward: 17.0, Step: 17
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 47/100, Reward: 17.0, Step: 17
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 48/100, Reward: 18.0, Step: 18
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 49/100, Reward: 25.0, Step: 25
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 50/100, Reward: 31.0, Step: 31
|
||||
2022-10-31 00:12:06 - r - INFO: - Current episode 50 has the best eval reward: 24.80
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 51/100, Reward: 22.0, Step: 22
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 52/100, Reward: 39.0, Step: 39
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 53/100, Reward: 36.0, Step: 36
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 54/100, Reward: 26.0, Step: 26
|
||||
2022-10-31 00:12:07 - r - INFO: - Episode: 55/100, Reward: 33.0, Step: 33
|
||||
2022-10-31 00:12:07 - r - INFO: - Current episode 55 has the best eval reward: 38.70
|
||||
2022-10-31 00:12:07 - r - INFO: - Episode: 56/100, Reward: 56.0, Step: 56
|
||||
2022-10-31 00:12:07 - r - INFO: - Episode: 57/100, Reward: 112.0, Step: 112
|
||||
2022-10-31 00:12:07 - r - INFO: - Episode: 58/100, Reward: 101.0, Step: 101
|
||||
2022-10-31 00:12:08 - r - INFO: - Episode: 59/100, Reward: 69.0, Step: 69
|
||||
2022-10-31 00:12:08 - r - INFO: - Episode: 60/100, Reward: 75.0, Step: 75
|
||||
2022-10-31 00:12:08 - r - INFO: - Episode: 61/100, Reward: 182.0, Step: 182
|
||||
2022-10-31 00:12:09 - r - INFO: - Episode: 62/100, Reward: 52.0, Step: 52
|
||||
2022-10-31 00:12:09 - r - INFO: - Episode: 63/100, Reward: 67.0, Step: 67
|
||||
2022-10-31 00:12:09 - r - INFO: - Episode: 64/100, Reward: 53.0, Step: 53
|
||||
2022-10-31 00:12:09 - r - INFO: - Episode: 65/100, Reward: 119.0, Step: 119
|
||||
2022-10-31 00:12:10 - r - INFO: - Current episode 65 has the best eval reward: 171.90
|
||||
2022-10-31 00:12:10 - r - INFO: - Episode: 66/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:10 - r - INFO: - Episode: 67/100, Reward: 74.0, Step: 74
|
||||
2022-10-31 00:12:11 - r - INFO: - Episode: 68/100, Reward: 138.0, Step: 138
|
||||
2022-10-31 00:12:11 - r - INFO: - Episode: 69/100, Reward: 149.0, Step: 149
|
||||
2022-10-31 00:12:12 - r - INFO: - Episode: 70/100, Reward: 144.0, Step: 144
|
||||
2022-10-31 00:12:12 - r - INFO: - Current episode 70 has the best eval reward: 173.70
|
||||
2022-10-31 00:12:13 - r - INFO: - Episode: 71/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:13 - r - INFO: - Episode: 72/100, Reward: 198.0, Step: 198
|
||||
2022-10-31 00:12:14 - r - INFO: - Episode: 73/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:14 - r - INFO: - Episode: 74/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:15 - r - INFO: - Episode: 75/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:16 - r - INFO: - Current episode 75 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:16 - r - INFO: - Episode: 76/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:17 - r - INFO: - Episode: 77/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:17 - r - INFO: - Episode: 78/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:18 - r - INFO: - Episode: 79/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:19 - r - INFO: - Episode: 80/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:19 - r - INFO: - Current episode 80 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:20 - r - INFO: - Episode: 81/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:20 - r - INFO: - Episode: 82/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:21 - r - INFO: - Episode: 83/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:21 - r - INFO: - Episode: 84/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:22 - r - INFO: - Episode: 85/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:23 - r - INFO: - Current episode 85 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:23 - r - INFO: - Episode: 86/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:24 - r - INFO: - Episode: 87/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:25 - r - INFO: - Episode: 88/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:25 - r - INFO: - Episode: 89/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:26 - r - INFO: - Episode: 90/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:27 - r - INFO: - Current episode 90 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:27 - r - INFO: - Episode: 91/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:28 - r - INFO: - Episode: 92/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:28 - r - INFO: - Episode: 93/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:29 - r - INFO: - Episode: 94/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:29 - r - INFO: - Episode: 95/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:30 - r - INFO: - Current episode 95 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:31 - r - INFO: - Episode: 96/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:31 - r - INFO: - Episode: 97/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:32 - r - INFO: - Episode: 98/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:32 - r - INFO: - Episode: 99/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:33 - r - INFO: - Episode: 100/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:33 - r - INFO: - Current episode 100 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:33 - r - INFO: - Finish training!
|
||||
|
After Width: | Height: | Size: 43 KiB |
@@ -0,0 +1,101 @@
|
||||
episodes,rewards,steps
|
||||
0,18.0,18
|
||||
1,35.0,35
|
||||
2,13.0,13
|
||||
3,32.0,32
|
||||
4,16.0,16
|
||||
5,12.0,12
|
||||
6,13.0,13
|
||||
7,15.0,15
|
||||
8,11.0,11
|
||||
9,15.0,15
|
||||
10,9.0,9
|
||||
11,13.0,13
|
||||
12,13.0,13
|
||||
13,10.0,10
|
||||
14,9.0,9
|
||||
15,24.0,24
|
||||
16,8.0,8
|
||||
17,10.0,10
|
||||
18,11.0,11
|
||||
19,13.0,13
|
||||
20,12.0,12
|
||||
21,11.0,11
|
||||
22,9.0,9
|
||||
23,21.0,21
|
||||
24,14.0,14
|
||||
25,12.0,12
|
||||
26,9.0,9
|
||||
27,11.0,11
|
||||
28,12.0,12
|
||||
29,13.0,13
|
||||
30,10.0,10
|
||||
31,13.0,13
|
||||
32,18.0,18
|
||||
33,9.0,9
|
||||
34,10.0,10
|
||||
35,9.0,9
|
||||
36,10.0,10
|
||||
37,10.0,10
|
||||
38,10.0,10
|
||||
39,8.0,8
|
||||
40,9.0,9
|
||||
41,9.0,9
|
||||
42,20.0,20
|
||||
43,16.0,16
|
||||
44,17.0,17
|
||||
45,17.0,17
|
||||
46,17.0,17
|
||||
47,18.0,18
|
||||
48,25.0,25
|
||||
49,31.0,31
|
||||
50,22.0,22
|
||||
51,39.0,39
|
||||
52,36.0,36
|
||||
53,26.0,26
|
||||
54,33.0,33
|
||||
55,56.0,56
|
||||
56,112.0,112
|
||||
57,101.0,101
|
||||
58,69.0,69
|
||||
59,75.0,75
|
||||
60,182.0,182
|
||||
61,52.0,52
|
||||
62,67.0,67
|
||||
63,53.0,53
|
||||
64,119.0,119
|
||||
65,200.0,200
|
||||
66,74.0,74
|
||||
67,138.0,138
|
||||
68,149.0,149
|
||||
69,144.0,144
|
||||
70,200.0,200
|
||||
71,198.0,198
|
||||
72,200.0,200
|
||||
73,200.0,200
|
||||
74,200.0,200
|
||||
75,200.0,200
|
||||
76,200.0,200
|
||||
77,200.0,200
|
||||
78,200.0,200
|
||||
79,200.0,200
|
||||
80,200.0,200
|
||||
81,200.0,200
|
||||
82,200.0,200
|
||||
83,200.0,200
|
||||
84,200.0,200
|
||||
85,200.0,200
|
||||
86,200.0,200
|
||||
87,200.0,200
|
||||
88,200.0,200
|
||||
89,200.0,200
|
||||
90,200.0,200
|
||||
91,200.0,200
|
||||
92,200.0,200
|
||||
93,200.0,200
|
||||
94,200.0,200
|
||||
95,200.0,200
|
||||
96,200.0,200
|
||||
97,200.0,200
|
||||
98,200.0,200
|
||||
99,200.0,200
|
||||
|
22
projects/codes/DQN/config/Acrobot-v1_DQN_Test.yaml
Normal file
@@ -0,0 +1,22 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: Acrobot-v1
|
||||
mode: test
|
||||
load_checkpoint: true
|
||||
load_path: Train_Acrobot-v1_DQN_20221026-094645
|
||||
max_steps: 100000
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 128
|
||||
buffer_size: 200000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
lr: 0.002
|
||||
target_update: 4
|
||||
22
projects/codes/DQN/config/Acrobot-v1_DQN_Train.yaml
Normal file
@@ -0,0 +1,22 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: Acrobot-v1
|
||||
mode: train
|
||||
load_checkpoint: false
|
||||
load_path: Train_CartPole-v1_DQN_20221026-054757
|
||||
max_steps: 100000
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 128
|
||||
buffer_size: 200000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
lr: 0.002
|
||||
target_update: 4
|
||||
22
projects/codes/DQN/config/CartPole-v1_DQN_Test.yaml
Normal file
@@ -0,0 +1,22 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
mode: test
|
||||
load_checkpoint: true
|
||||
load_path: Train_CartPole-v1_DQN_20221031-001201
|
||||
max_steps: 200
|
||||
save_fig: true
|
||||
seed: 0
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
lr: 0.0001
|
||||
target_update: 4
|
||||
22
projects/codes/DQN/config/CartPole-v1_DQN_Train.yaml
Normal file
@@ -0,0 +1,22 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
mode: train
|
||||
load_checkpoint: false
|
||||
load_path: Train_CartPole-v1_DQN_20221026-054757
|
||||
max_steps: 200
|
||||
save_fig: true
|
||||
seed: 0
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 200
|
||||
algo_cfg:
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
lr: 0.0001
|
||||
target_update: 4
|
||||
38
projects/codes/DQN/config/config.py
Normal file
@@ -0,0 +1,38 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-30 00:37:33
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-10-31 00:11:57
|
||||
Discription: default parameters of DQN
|
||||
'''
|
||||
from common.config import GeneralConfig,AlgoConfig
|
||||
class GeneralConfigDQN(GeneralConfig):
|
||||
def __init__(self) -> None:
|
||||
self.env_name = "CartPole-v1" # name of environment
|
||||
self.algo_name = "DQN" # name of algorithm
|
||||
self.mode = "train" # train or test
|
||||
self.seed = 1 # random seed
|
||||
self.device = "cuda" # device to use
|
||||
self.train_eps = 100 # number of episodes for training
|
||||
self.test_eps = 10 # number of episodes for testing
|
||||
self.max_steps = 200 # max steps for each episode
|
||||
self.load_checkpoint = False
|
||||
self.load_path = "tasks" # path to load model
|
||||
self.show_fig = False # show figure or not
|
||||
self.save_fig = True # save figure or not
|
||||
|
||||
class AlgoConfigDQN(AlgoConfig):
|
||||
def __init__(self) -> None:
|
||||
# set epsilon_start=epsilon_end can obtain fixed epsilon=epsilon_end
|
||||
self.epsilon_start = 0.95 # epsilon start value
|
||||
self.epsilon_end = 0.01 # epsilon end value
|
||||
self.epsilon_decay = 500 # epsilon decay rate
|
||||
self.hidden_dim = 256 # hidden_dim for MLP
|
||||
self.gamma = 0.95 # discount factor
|
||||
self.lr = 0.0001 # learning rate
|
||||
self.buffer_size = 100000 # size of replay buffer
|
||||
self.batch_size = 64 # batch size
|
||||
self.target_update = 800 # target network update frequency per steps
|
||||
@@ -5,7 +5,7 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:50:49
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-08-29 23:30:08
|
||||
LastEditTime: 2022-10-31 00:07:19
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
@@ -22,27 +22,28 @@ import numpy as np
|
||||
class DQN:
|
||||
def __init__(self,model,memory,cfg):
|
||||
|
||||
self.n_actions = cfg['n_actions']
|
||||
self.device = torch.device(cfg['device'])
|
||||
self.gamma = cfg['gamma']
|
||||
self.n_actions = cfg.n_actions
|
||||
self.device = torch.device(cfg.device)
|
||||
self.gamma = cfg.gamma
|
||||
## e-greedy parameters
|
||||
self.sample_count = 0 # sample count for epsilon decay
|
||||
self.epsilon = cfg['epsilon_start']
|
||||
self.epsilon = cfg.epsilon_start
|
||||
self.sample_count = 0
|
||||
self.epsilon_start = cfg['epsilon_start']
|
||||
self.epsilon_end = cfg['epsilon_end']
|
||||
self.epsilon_decay = cfg['epsilon_decay']
|
||||
self.batch_size = cfg['batch_size']
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.batch_size = cfg.batch_size
|
||||
self.target_update = cfg.target_update
|
||||
self.policy_net = model.to(self.device)
|
||||
self.target_net = model.to(self.device)
|
||||
## copy parameters from policy net to target net
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
# self.target_net.load_state_dict(self.policy_net.state_dict()) # or use this to copy parameters
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg['lr'])
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
|
||||
self.memory = memory
|
||||
self.update_flag = False
|
||||
|
||||
|
||||
def sample_action(self, state):
|
||||
''' sample action with e-greedy policy
|
||||
'''
|
||||
@@ -58,6 +59,21 @@ class DQN:
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
# @torch.no_grad()
|
||||
# def sample_action(self, state):
|
||||
# ''' sample action with e-greedy policy
|
||||
# '''
|
||||
# self.sample_count += 1
|
||||
# # epsilon must decay(linear,exponential and etc.) for balancing exploration and exploitation
|
||||
# self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
# math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
# if random.random() > self.epsilon:
|
||||
# state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
# q_values = self.policy_net(state)
|
||||
# action = q_values.max(1)[1].item() # choose action corresponding to the maximum q value
|
||||
# else:
|
||||
# action = random.randrange(self.n_actions)
|
||||
# return action
|
||||
def predict_action(self,state):
|
||||
''' predict action
|
||||
'''
|
||||
@@ -99,14 +115,16 @@ class DQN:
|
||||
for param in self.policy_net.parameters():
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step()
|
||||
if self.sample_count % self.target_update == 0: # target net update, target_update means "C" in pseucodes
|
||||
self.target_net.load_state_dict(self.policy_net.state_dict())
|
||||
|
||||
def save_model(self, path):
|
||||
def save_model(self, fpath):
|
||||
from pathlib import Path
|
||||
# create path
|
||||
Path(path).mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.target_net.state_dict(), f"{path}/checkpoint.pt")
|
||||
Path(fpath).mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.target_net.state_dict(), f"{fpath}/checkpoint.pt")
|
||||
|
||||
def load_model(self, path):
|
||||
self.target_net.load_state_dict(torch.load(f"{path}/checkpoint.pt"))
|
||||
def load_model(self, fpath):
|
||||
self.target_net.load_state_dict(torch.load(f"{fpath}/checkpoint.pt"))
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
param.data.copy_(target_param.data)
|
||||
|
||||
@@ -1 +0,0 @@
|
||||
{"algo_name": "DQN", "env_name": "Acrobot-v1", "train_eps": 100, "test_eps": 20, "gamma": 0.95, "epsilon_start": 0.95, "epsilon_end": 0.01, "epsilon_decay": 1500, "lr": 0.002, "memory_capacity": 200000, "batch_size": 128, "target_update": 4, "hidden_dim": 256, "device": "cuda", "seed": 10, "show_fig": false, "save_fig": true, "result_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/Acrobot-v1/20220824-124401/results", "model_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/Acrobot-v1/20220824-124401/models", "n_states": 6, "n_actions": 3}
|
||||
|
Before Width: | Height: | Size: 51 KiB |
@@ -1,21 +0,0 @@
|
||||
episodes,rewards
|
||||
0,-79.0
|
||||
1,-113.0
|
||||
2,-81.0
|
||||
3,-132.0
|
||||
4,-110.0
|
||||
5,-114.0
|
||||
6,-80.0
|
||||
7,-101.0
|
||||
8,-78.0
|
||||
9,-91.0
|
||||
10,-107.0
|
||||
11,-87.0
|
||||
12,-105.0
|
||||
13,-91.0
|
||||
14,-128.0
|
||||
15,-132.0
|
||||
16,-119.0
|
||||
17,-77.0
|
||||
18,-89.0
|
||||
19,-134.0
|
||||
|
|
Before Width: | Height: | Size: 54 KiB |
@@ -1,101 +0,0 @@
|
||||
episodes,rewards
|
||||
0,-500.0
|
||||
1,-500.0
|
||||
2,-500.0
|
||||
3,-370.0
|
||||
4,-449.0
|
||||
5,-500.0
|
||||
6,-312.0
|
||||
7,-374.0
|
||||
8,-180.0
|
||||
9,-154.0
|
||||
10,-137.0
|
||||
11,-185.0
|
||||
12,-135.0
|
||||
13,-302.0
|
||||
14,-146.0
|
||||
15,-137.0
|
||||
16,-119.0
|
||||
17,-149.0
|
||||
18,-217.0
|
||||
19,-191.0
|
||||
20,-157.0
|
||||
21,-166.0
|
||||
22,-138.0
|
||||
23,-135.0
|
||||
24,-182.0
|
||||
25,-130.0
|
||||
26,-175.0
|
||||
27,-222.0
|
||||
28,-133.0
|
||||
29,-108.0
|
||||
30,-250.0
|
||||
31,-119.0
|
||||
32,-135.0
|
||||
33,-148.0
|
||||
34,-194.0
|
||||
35,-194.0
|
||||
36,-186.0
|
||||
37,-131.0
|
||||
38,-185.0
|
||||
39,-79.0
|
||||
40,-129.0
|
||||
41,-271.0
|
||||
42,-117.0
|
||||
43,-159.0
|
||||
44,-156.0
|
||||
45,-117.0
|
||||
46,-158.0
|
||||
47,-153.0
|
||||
48,-119.0
|
||||
49,-164.0
|
||||
50,-134.0
|
||||
51,-231.0
|
||||
52,-117.0
|
||||
53,-119.0
|
||||
54,-136.0
|
||||
55,-173.0
|
||||
56,-202.0
|
||||
57,-133.0
|
||||
58,-142.0
|
||||
59,-169.0
|
||||
60,-137.0
|
||||
61,-123.0
|
||||
62,-205.0
|
||||
63,-107.0
|
||||
64,-194.0
|
||||
65,-150.0
|
||||
66,-143.0
|
||||
67,-218.0
|
||||
68,-145.0
|
||||
69,-90.0
|
||||
70,-107.0
|
||||
71,-169.0
|
||||
72,-125.0
|
||||
73,-142.0
|
||||
74,-145.0
|
||||
75,-94.0
|
||||
76,-150.0
|
||||
77,-134.0
|
||||
78,-159.0
|
||||
79,-137.0
|
||||
80,-146.0
|
||||
81,-191.0
|
||||
82,-242.0
|
||||
83,-117.0
|
||||
84,-92.0
|
||||
85,-193.0
|
||||
86,-239.0
|
||||
87,-173.0
|
||||
88,-140.0
|
||||
89,-157.0
|
||||
90,-133.0
|
||||
91,-148.0
|
||||
92,-87.0
|
||||
93,-398.0
|
||||
94,-98.0
|
||||
95,-121.0
|
||||
96,-102.0
|
||||
97,-120.0
|
||||
98,-195.0
|
||||
99,-219.0
|
||||
|
@@ -1,21 +0,0 @@
|
||||
{
|
||||
"algo_name": "DQN",
|
||||
"env_name": "CartPole-v0",
|
||||
"train_eps": 200,
|
||||
"test_eps": 20,
|
||||
"gamma": 0.95,
|
||||
"epsilon_start": 0.95,
|
||||
"epsilon_end": 0.01,
|
||||
"epsilon_decay": 500,
|
||||
"lr": 0.0001,
|
||||
"memory_capacity": 100000,
|
||||
"batch_size": 64,
|
||||
"target_update": 4,
|
||||
"hidden_dim": 256,
|
||||
"device": "cpu",
|
||||
"seed": 10,
|
||||
"result_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v0/20220823-173936/results",
|
||||
"model_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v0/20220823-173936/models",
|
||||
"show_fig": false,
|
||||
"save_fig": true
|
||||
}
|
||||
|
Before Width: | Height: | Size: 27 KiB |
@@ -1,21 +0,0 @@
|
||||
episodes,rewards
|
||||
0,200.0
|
||||
1,200.0
|
||||
2,200.0
|
||||
3,200.0
|
||||
4,200.0
|
||||
5,200.0
|
||||
6,200.0
|
||||
7,200.0
|
||||
8,200.0
|
||||
9,200.0
|
||||
10,200.0
|
||||
11,200.0
|
||||
12,200.0
|
||||
13,200.0
|
||||
14,200.0
|
||||
15,200.0
|
||||
16,200.0
|
||||
17,200.0
|
||||
18,200.0
|
||||
19,200.0
|
||||
|
|
Before Width: | Height: | Size: 38 KiB |
@@ -1,201 +0,0 @@
|
||||
episodes,rewards
|
||||
0,38.0
|
||||
1,16.0
|
||||
2,37.0
|
||||
3,15.0
|
||||
4,22.0
|
||||
5,34.0
|
||||
6,20.0
|
||||
7,12.0
|
||||
8,16.0
|
||||
9,14.0
|
||||
10,13.0
|
||||
11,21.0
|
||||
12,14.0
|
||||
13,12.0
|
||||
14,17.0
|
||||
15,12.0
|
||||
16,10.0
|
||||
17,14.0
|
||||
18,10.0
|
||||
19,10.0
|
||||
20,16.0
|
||||
21,9.0
|
||||
22,14.0
|
||||
23,13.0
|
||||
24,10.0
|
||||
25,9.0
|
||||
26,12.0
|
||||
27,12.0
|
||||
28,14.0
|
||||
29,11.0
|
||||
30,9.0
|
||||
31,8.0
|
||||
32,9.0
|
||||
33,11.0
|
||||
34,12.0
|
||||
35,10.0
|
||||
36,11.0
|
||||
37,10.0
|
||||
38,10.0
|
||||
39,18.0
|
||||
40,13.0
|
||||
41,15.0
|
||||
42,10.0
|
||||
43,9.0
|
||||
44,14.0
|
||||
45,14.0
|
||||
46,23.0
|
||||
47,17.0
|
||||
48,15.0
|
||||
49,15.0
|
||||
50,20.0
|
||||
51,28.0
|
||||
52,36.0
|
||||
53,36.0
|
||||
54,23.0
|
||||
55,27.0
|
||||
56,53.0
|
||||
57,19.0
|
||||
58,35.0
|
||||
59,62.0
|
||||
60,57.0
|
||||
61,38.0
|
||||
62,61.0
|
||||
63,65.0
|
||||
64,58.0
|
||||
65,43.0
|
||||
66,67.0
|
||||
67,56.0
|
||||
68,91.0
|
||||
69,128.0
|
||||
70,71.0
|
||||
71,126.0
|
||||
72,100.0
|
||||
73,200.0
|
||||
74,200.0
|
||||
75,200.0
|
||||
76,200.0
|
||||
77,200.0
|
||||
78,200.0
|
||||
79,200.0
|
||||
80,200.0
|
||||
81,200.0
|
||||
82,200.0
|
||||
83,200.0
|
||||
84,200.0
|
||||
85,200.0
|
||||
86,200.0
|
||||
87,200.0
|
||||
88,200.0
|
||||
89,200.0
|
||||
90,200.0
|
||||
91,200.0
|
||||
92,200.0
|
||||
93,200.0
|
||||
94,200.0
|
||||
95,200.0
|
||||
96,200.0
|
||||
97,200.0
|
||||
98,200.0
|
||||
99,200.0
|
||||
100,200.0
|
||||
101,200.0
|
||||
102,200.0
|
||||
103,200.0
|
||||
104,200.0
|
||||
105,200.0
|
||||
106,200.0
|
||||
107,200.0
|
||||
108,200.0
|
||||
109,200.0
|
||||
110,200.0
|
||||
111,200.0
|
||||
112,200.0
|
||||
113,200.0
|
||||
114,200.0
|
||||
115,200.0
|
||||
116,200.0
|
||||
117,200.0
|
||||
118,200.0
|
||||
119,200.0
|
||||
120,200.0
|
||||
121,200.0
|
||||
122,200.0
|
||||
123,200.0
|
||||
124,200.0
|
||||
125,200.0
|
||||
126,200.0
|
||||
127,200.0
|
||||
128,200.0
|
||||
129,200.0
|
||||
130,200.0
|
||||
131,200.0
|
||||
132,200.0
|
||||
133,200.0
|
||||
134,200.0
|
||||
135,200.0
|
||||
136,200.0
|
||||
137,200.0
|
||||
138,200.0
|
||||
139,200.0
|
||||
140,200.0
|
||||
141,200.0
|
||||
142,200.0
|
||||
143,200.0
|
||||
144,200.0
|
||||
145,200.0
|
||||
146,200.0
|
||||
147,200.0
|
||||
148,200.0
|
||||
149,200.0
|
||||
150,200.0
|
||||
151,200.0
|
||||
152,200.0
|
||||
153,200.0
|
||||
154,200.0
|
||||
155,200.0
|
||||
156,200.0
|
||||
157,200.0
|
||||
158,200.0
|
||||
159,200.0
|
||||
160,200.0
|
||||
161,200.0
|
||||
162,200.0
|
||||
163,200.0
|
||||
164,200.0
|
||||
165,200.0
|
||||
166,200.0
|
||||
167,200.0
|
||||
168,200.0
|
||||
169,200.0
|
||||
170,200.0
|
||||
171,200.0
|
||||
172,200.0
|
||||
173,200.0
|
||||
174,200.0
|
||||
175,200.0
|
||||
176,200.0
|
||||
177,200.0
|
||||
178,200.0
|
||||
179,200.0
|
||||
180,200.0
|
||||
181,200.0
|
||||
182,200.0
|
||||
183,200.0
|
||||
184,200.0
|
||||
185,200.0
|
||||
186,200.0
|
||||
187,200.0
|
||||
188,200.0
|
||||
189,200.0
|
||||
190,200.0
|
||||
191,200.0
|
||||
192,200.0
|
||||
193,200.0
|
||||
194,200.0
|
||||
195,200.0
|
||||
196,200.0
|
||||
197,200.0
|
||||
198,200.0
|
||||
199,200.0
|
||||
|
@@ -1,24 +0,0 @@
|
||||
{
|
||||
"algo_name": "DQN",
|
||||
"env_name": "CartPole-v1",
|
||||
"train_eps": 2000,
|
||||
"test_eps": 20,
|
||||
"ep_max_steps": 100000,
|
||||
"gamma": 0.99,
|
||||
"epsilon_start": 0.95,
|
||||
"epsilon_end": 0.01,
|
||||
"epsilon_decay": 6000,
|
||||
"lr": 1e-05,
|
||||
"memory_capacity": 200000,
|
||||
"batch_size": 64,
|
||||
"target_update": 4,
|
||||
"hidden_dim": 256,
|
||||
"device": "cuda",
|
||||
"seed": 10,
|
||||
"show_fig": false,
|
||||
"save_fig": true,
|
||||
"result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v1/20220828-214702/results",
|
||||
"model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v1/20220828-214702/models",
|
||||
"n_states": 4,
|
||||
"n_actions": 2
|
||||
}
|
||||
|
Before Width: | Height: | Size: 50 KiB |
@@ -1,21 +0,0 @@
|
||||
episodes,rewards,steps
|
||||
0,371.0,371
|
||||
1,446.0,446
|
||||
2,300.0,300
|
||||
3,500.0,500
|
||||
4,313.0,313
|
||||
5,500.0,500
|
||||
6,341.0,341
|
||||
7,489.0,489
|
||||
8,304.0,304
|
||||
9,358.0,358
|
||||
10,278.0,278
|
||||
11,500.0,500
|
||||
12,500.0,500
|
||||
13,500.0,500
|
||||
14,500.0,500
|
||||
15,476.0,476
|
||||
16,308.0,308
|
||||
17,394.0,394
|
||||
18,500.0,500
|
||||
19,500.0,500
|
||||
|
|
Before Width: | Height: | Size: 50 KiB |
138
projects/codes/DQN/task0.py
Normal file
@@ -0,0 +1,138 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-12 11:09:54
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-10-31 00:13:31
|
||||
Discription: CartPole-v1,Acrobot-v1
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add to system path
|
||||
import gym
|
||||
from common.utils import all_seed,merge_class_attrs
|
||||
from common.models import MLP
|
||||
from common.memories import ReplayBuffer
|
||||
from common.launcher import Launcher
|
||||
from envs.register import register_env
|
||||
from dqn import DQN
|
||||
from config.config import GeneralConfigDQN,AlgoConfigDQN
|
||||
class Main(Launcher):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigDQN())
|
||||
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigDQN())
|
||||
def env_agent_config(self,cfg,logger):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg.env_name)
|
||||
env = gym.make(cfg.env_name,new_step_api=True) # create env
|
||||
if cfg.seed !=0: # set random seed
|
||||
all_seed(env,seed=cfg.seed)
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
|
||||
# update to cfg paramters
|
||||
setattr(cfg, 'n_states', n_states)
|
||||
setattr(cfg, 'n_actions', n_actions)
|
||||
# cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||||
model = MLP(n_states,n_actions,hidden_dim=cfg.hidden_dim)
|
||||
memory = ReplayBuffer(cfg.buffer_size) # replay buffer
|
||||
agent = DQN(model,memory,cfg) # create agent
|
||||
return env, agent
|
||||
def train_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
ep_step += 1
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions under new_step_api of OpenAI Gym
|
||||
agent.memory.push(state, action, reward,
|
||||
next_state, terminated) # save transitions
|
||||
agent.update() # update agent
|
||||
state = next_state # update next state for env
|
||||
ep_reward += reward #
|
||||
if terminated:
|
||||
break
|
||||
return agent,ep_reward,ep_step
|
||||
def test_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
ep_step += 1
|
||||
action = agent.predict_action(state) # sample action
|
||||
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions under new_step_api of OpenAI Gym
|
||||
state = next_state # update next state for env
|
||||
ep_reward += reward #
|
||||
if terminated:
|
||||
break
|
||||
return agent,ep_reward,ep_step
|
||||
# def train(self,env, agent,cfg,logger):
|
||||
# ''' 训练
|
||||
# '''
|
||||
# logger.info("Start training!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.train_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# ep_step += 1
|
||||
# action = agent.sample_action(state) # sample action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions under new_step_api of OpenAI Gym
|
||||
# agent.memory.push(state, action, reward,
|
||||
# next_state, terminated) # save transitions
|
||||
# state = next_state # update next state for env
|
||||
# agent.update() # update agent
|
||||
# ep_reward += reward #
|
||||
# if terminated:
|
||||
# break
|
||||
# if (i_ep + 1) % cfg.target_update == 0: # target net update, target_update means "C" in pseucodes
|
||||
# agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
# steps.append(ep_step)
|
||||
# rewards.append(ep_reward)
|
||||
# logger.info(f'Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}: Epislon: {agent.epsilon:.3f}')
|
||||
# logger.info("Finish training!")
|
||||
# env.close()
|
||||
# res_dic = {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
# return res_dic
|
||||
|
||||
# def test(self,cfg, env, agent,logger):
|
||||
# logger.info("Start testing!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.test_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# ep_step+=1
|
||||
# action = agent.predict_action(state) # predict action
|
||||
# next_state, reward, terminated, _, _ = env.step(action)
|
||||
# state = next_state
|
||||
# ep_reward += reward
|
||||
# if terminated:
|
||||
# break
|
||||
# steps.append(ep_step)
|
||||
# rewards.append(ep_reward)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}")
|
||||
# logger.info("Finish testing!")
|
||||
# env.close()
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
@@ -1,3 +1,13 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-24 08:21:31
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-10-26 09:50:49
|
||||
Discription: Not finished
|
||||
'''
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
@@ -15,6 +25,73 @@ from common.memories import ReplayBuffer
|
||||
from common.launcher import Launcher
|
||||
from envs.register import register_env
|
||||
from dqn import DQN
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision.transforms as T
|
||||
from PIL import Image
|
||||
resize = T.Compose([T.ToPILImage(),
|
||||
T.Resize(40, interpolation=Image.CUBIC),
|
||||
T.ToTensor()])
|
||||
|
||||
# xvfb-run -s "-screen 0 640x480x24" python main1.py
|
||||
def get_cart_location(env,screen_width):
|
||||
world_width = env.x_threshold * 2
|
||||
scale = screen_width / world_width
|
||||
return int(env.state[0] * scale + screen_width / 2.0) # MIDDLE OF CART
|
||||
|
||||
def get_screen(env):
|
||||
# Returned screen requested by gym is 400x600x3, but is sometimes larger
|
||||
# such as 800x1200x3. Transpose it into torch order (CHW).
|
||||
screen = env.render().transpose((2, 0, 1))
|
||||
# Cart is in the lower half, so strip off the top and bottom of the screen
|
||||
_, screen_height, screen_width = screen.shape
|
||||
screen = screen[:, int(screen_height*0.4):int(screen_height * 0.8)]
|
||||
view_width = int(screen_width * 0.6)
|
||||
cart_location = get_cart_location(env,screen_width)
|
||||
if cart_location < view_width // 2:
|
||||
slice_range = slice(view_width)
|
||||
elif cart_location > (screen_width - view_width // 2):
|
||||
slice_range = slice(-view_width, None)
|
||||
else:
|
||||
slice_range = slice(cart_location - view_width // 2,
|
||||
cart_location + view_width // 2)
|
||||
# Strip off the edges, so that we have a square image centered on a cart
|
||||
screen = screen[:, :, slice_range]
|
||||
# Convert to float, rescale, convert to torch tensor
|
||||
# (this doesn't require a copy)
|
||||
screen = np.ascontiguousarray(screen, dtype=np.float32) / 255
|
||||
screen = torch.from_numpy(screen)
|
||||
# Resize, and add a batch dimension (BCHW)
|
||||
return resize(screen)
|
||||
|
||||
|
||||
class CNN(nn.Module):
|
||||
|
||||
def __init__(self, h, w, outputs):
|
||||
super(CNN, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3, 16, kernel_size=5, stride=2)
|
||||
self.bn1 = nn.BatchNorm2d(16)
|
||||
self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=2)
|
||||
self.bn2 = nn.BatchNorm2d(32)
|
||||
self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2)
|
||||
self.bn3 = nn.BatchNorm2d(32)
|
||||
|
||||
# Number of Linear input connections depends on output of conv2d layers
|
||||
# and therefore the input image size, so compute it.
|
||||
def conv2d_size_out(size, kernel_size = 5, stride = 2):
|
||||
return (size - (kernel_size - 1) - 1) // stride + 1
|
||||
convw = conv2d_size_out(conv2d_size_out(conv2d_size_out(w)))
|
||||
convh = conv2d_size_out(conv2d_size_out(conv2d_size_out(h)))
|
||||
linear_input_size = convw * convh * 32
|
||||
self.head = nn.Linear(linear_input_size, outputs)
|
||||
|
||||
# Called with either one element to determine next action, or a batch
|
||||
# during optimization. Returns tensor([[left0exp,right0exp]...]).
|
||||
def forward(self, x):
|
||||
x = F.relu(self.bn1(self.conv1(x)))
|
||||
x = F.relu(self.bn2(self.conv2(x)))
|
||||
x = F.relu(self.bn3(self.conv3(x)))
|
||||
return self.head(x.view(x.size(0), -1))
|
||||
class Main(Launcher):
|
||||
def get_args(self):
|
||||
""" hyperparameters
|
||||
@@ -22,20 +99,20 @@ class Main(Launcher):
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
|
||||
parser.add_argument('--env_name',default='CartPole-v1',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=800,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
|
||||
parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor")
|
||||
parser.add_argument('--gamma',default=0.999,type=float,help="discounted factor")
|
||||
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
|
||||
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
|
||||
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon, the higher value, the slower decay")
|
||||
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
|
||||
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
|
||||
parser.add_argument('--batch_size',default=64,type=int)
|
||||
parser.add_argument('--batch_size',default=128,type=int)
|
||||
parser.add_argument('--target_update',default=4,type=int)
|
||||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--device',default='cuda',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--seed',default=10,type=int,help="seed")
|
||||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
@@ -48,11 +125,10 @@ class Main(Launcher):
|
||||
args = {**vars(args)} # type(dict)
|
||||
return args
|
||||
|
||||
def env_agent_config(cfg):
|
||||
def env_agent_config(self,cfg):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg['env_name'])
|
||||
env = gym.make(cfg['env_name'])
|
||||
env = gym.make('CartPole-v1', new_step_api=True, render_mode='single_rgb_array').unwrapped
|
||||
if cfg['seed'] !=0: # set random seed
|
||||
all_seed(env,seed=cfg["seed"])
|
||||
try: # state dimension
|
||||
@@ -62,12 +138,15 @@ class Main(Launcher):
|
||||
n_actions = env.action_space.n # action dimension
|
||||
print(f"n_states: {n_states}, n_actions: {n_actions}")
|
||||
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||||
model = MLP(n_states,n_actions,hidden_dim=cfg["hidden_dim"])
|
||||
env.reset()
|
||||
init_screen = get_screen(env)
|
||||
_, screen_height, screen_width = init_screen.shape
|
||||
model = CNN(screen_height, screen_width, n_actions)
|
||||
memory = ReplayBuffer(cfg["memory_capacity"]) # replay buffer
|
||||
agent = DQN(model,memory,cfg) # create agent
|
||||
return env, agent
|
||||
|
||||
def train(cfg, env, agent):
|
||||
def train(self,cfg, env, agent):
|
||||
''' 训练
|
||||
'''
|
||||
print("Start training!")
|
||||
@@ -78,12 +157,18 @@ class Main(Launcher):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
last_screen = get_screen(env)
|
||||
current_screen = get_screen(env)
|
||||
state = current_screen - last_screen
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
ep_step += 1
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, done, _ = env.step(action) # update env and return transitions
|
||||
agent.memory.push(state, action, reward,
|
||||
next_state, done) # save transitions
|
||||
_, reward, done, _,_ = env.step(action) # update env and return transitions
|
||||
last_screen = current_screen
|
||||
current_screen = get_screen(env)
|
||||
next_state = current_screen - last_screen
|
||||
agent.memory.push(state.cpu().numpy(), action, reward,
|
||||
next_state.cpu().numpy(), done) # save transitions
|
||||
state = next_state # update next state for env
|
||||
agent.update() # update agent
|
||||
ep_reward += reward #
|
||||
@@ -94,13 +179,13 @@ class Main(Launcher):
|
||||
steps.append(ep_step)
|
||||
rewards.append(ep_reward)
|
||||
if (i_ep + 1) % 10 == 0:
|
||||
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}: Epislon: {agent.epsilon:.3f}')
|
||||
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}, step: {ep_step:d}, Epislon: {agent.epsilon:.3f}')
|
||||
print("Finish training!")
|
||||
env.close()
|
||||
res_dic = {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
return res_dic
|
||||
|
||||
def test(cfg, env, agent):
|
||||
def test(self,cfg, env, agent):
|
||||
print("Start testing!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
@@ -109,10 +194,16 @@ class Main(Launcher):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
last_screen = get_screen(env)
|
||||
current_screen = get_screen(env)
|
||||
state = current_screen - last_screen
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
ep_step+=1
|
||||
action = agent.predict_action(state) # predict action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
_, reward, done, _,_ = env.step(action)
|
||||
last_screen = current_screen
|
||||
current_screen = get_screen(env)
|
||||
next_state = current_screen - last_screen
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
if done:
|
||||