更新算法模版
7
projects/codes/A2C/README.md
Normal file
@@ -0,0 +1,7 @@
|
||||
## 脚本描述
|
||||
|
||||
* `task0.py`:离散动作任务
|
||||
|
||||
* `task1.py`:离散动作任务,与`task0.py`唯一的区别就是Actor的激活函数是tanh而不是relu,在`CartPole-v1`上效果更好
|
||||
|
||||
* `task2.py`:连续动作任务,#TODO待调试
|
||||
@@ -0,0 +1,24 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
load_checkpoint: true
|
||||
load_path: Train_CartPole-v1_A2C_20221030-211435
|
||||
max_steps: 200
|
||||
mode: test
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
actor_hidden_dim: 256
|
||||
actor_lr: 0.0003
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
critic_hidden_dim: 256
|
||||
critic_lr: 0.001
|
||||
gamma: 0.99
|
||||
hidden_dim: 256
|
||||
target_update: 4
|
||||
@@ -0,0 +1,23 @@
|
||||
2022-10-30 21:25:53 - r - INFO: - n_states: 4, n_actions: 2
|
||||
2022-10-30 21:25:55 - r - INFO: - Start testing!
|
||||
2022-10-30 21:25:55 - r - INFO: - Env: CartPole-v1, Algorithm: A2C, Device: cuda
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 1/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 2/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 3/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 4/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 5/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 6/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 7/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 8/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 9/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 10/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 11/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 12/20, Reward: 190.0, Step: 190
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 13/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 14/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 15/20, Reward: 96.0, Step: 96
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 16/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 17/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 18/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 19/20, Reward: 112.0, Step: 112
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 20/20, Reward: 200.0, Step: 200
|
||||
|
After Width: | Height: | Size: 34 KiB |
@@ -0,0 +1,21 @@
|
||||
episodes,rewards,steps
|
||||
0,200.0,200
|
||||
1,200.0,200
|
||||
2,200.0,200
|
||||
3,200.0,200
|
||||
4,200.0,200
|
||||
5,200.0,200
|
||||
6,200.0,200
|
||||
7,200.0,200
|
||||
8,200.0,200
|
||||
9,200.0,200
|
||||
10,200.0,200
|
||||
11,190.0,190
|
||||
12,200.0,200
|
||||
13,200.0,200
|
||||
14,96.0,96
|
||||
15,200.0,200
|
||||
16,200.0,200
|
||||
17,200.0,200
|
||||
18,112.0,112
|
||||
19,200.0,200
|
||||
|
@@ -0,0 +1,25 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
eval_per_episode: 5
|
||||
load_checkpoint: true
|
||||
load_path: Train_CartPole-v1_A2C_20221031-232138
|
||||
max_steps: 200
|
||||
mode: test
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
actor_hidden_dim: 256
|
||||
actor_lr: 0.0003
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
critic_hidden_dim: 256
|
||||
critic_lr: 0.001
|
||||
gamma: 0.99
|
||||
hidden_dim: 256
|
||||
target_update: 4
|
||||
@@ -0,0 +1,28 @@
|
||||
2022-10-31 23:33:16 - r - INFO: - n_states: 4, n_actions: 2
|
||||
2022-10-31 23:33:16 - r - INFO: - Actor model name: ActorSoftmaxTanh
|
||||
2022-10-31 23:33:16 - r - INFO: - Critic model name: Critic
|
||||
2022-10-31 23:33:16 - r - INFO: - ACMemory memory name: PGReplay
|
||||
2022-10-31 23:33:16 - r - INFO: - agent name: A2C
|
||||
2022-10-31 23:33:17 - r - INFO: - Start testing!
|
||||
2022-10-31 23:33:17 - r - INFO: - Env: CartPole-v1, Algorithm: A2C, Device: cuda
|
||||
2022-10-31 23:33:18 - r - INFO: - Episode: 1/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:18 - r - INFO: - Episode: 2/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:18 - r - INFO: - Episode: 3/20, Reward: 186.0, Step: 186
|
||||
2022-10-31 23:33:18 - r - INFO: - Episode: 4/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:18 - r - INFO: - Episode: 5/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 6/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 7/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 8/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 9/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 10/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 11/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 12/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 13/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 14/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 15/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 16/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 17/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 18/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 19/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:20 - r - INFO: - Episode: 20/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:20 - r - INFO: - Finish testing!
|
||||
|
After Width: | Height: | Size: 31 KiB |
@@ -1,21 +1,21 @@
|
||||
episodes,rewards,steps
|
||||
0,200.0,200
|
||||
1,200.0,200
|
||||
2,93.0,93
|
||||
3,155.0,155
|
||||
4,116.0,116
|
||||
2,186.0,186
|
||||
3,200.0,200
|
||||
4,200.0,200
|
||||
5,200.0,200
|
||||
6,190.0,190
|
||||
7,176.0,176
|
||||
6,200.0,200
|
||||
7,200.0,200
|
||||
8,200.0,200
|
||||
9,200.0,200
|
||||
10,200.0,200
|
||||
11,179.0,179
|
||||
11,200.0,200
|
||||
12,200.0,200
|
||||
13,185.0,185
|
||||
14,191.0,191
|
||||
13,200.0,200
|
||||
14,200.0,200
|
||||
15,200.0,200
|
||||
16,200.0,200
|
||||
17,124.0,124
|
||||
17,200.0,200
|
||||
18,200.0,200
|
||||
19,172.0,172
|
||||
19,200.0,200
|
||||
|
@@ -0,0 +1,23 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
load_checkpoint: false
|
||||
load_path: tasks
|
||||
max_steps: 200
|
||||
mode: train
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
actor_hidden_dim: 256
|
||||
actor_lr: 0.0003
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
critic_hidden_dim: 256
|
||||
critic_lr: 0.001
|
||||
gamma: 0.99
|
||||
hidden_dim: 256
|
||||
|
After Width: | Height: | Size: 68 KiB |
@@ -0,0 +1,24 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
eval_per_episode: 5
|
||||
load_checkpoint: false
|
||||
load_path: tasks
|
||||
max_steps: 200
|
||||
mode: train
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
actor_hidden_dim: 256
|
||||
actor_lr: 0.0003
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
critic_hidden_dim: 256
|
||||
critic_lr: 0.001
|
||||
gamma: 0.99
|
||||
hidden_dim: 256
|
||||
|
After Width: | Height: | Size: 58 KiB |
@@ -1,34 +1,79 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-08-16 23:05:25
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-11-01 00:33:49
|
||||
Discription:
|
||||
'''
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from torch.distributions import Categorical,Normal
|
||||
|
||||
|
||||
class A2C:
|
||||
def __init__(self,models,memories,cfg):
|
||||
self.n_actions = cfg['n_actions']
|
||||
self.gamma = cfg['gamma']
|
||||
self.device = torch.device(cfg['device'])
|
||||
self.n_actions = cfg.n_actions
|
||||
self.gamma = cfg.gamma
|
||||
self.device = torch.device(cfg.device)
|
||||
self.continuous = cfg.continuous
|
||||
if hasattr(cfg,'action_bound'):
|
||||
self.action_bound = cfg.action_bound
|
||||
self.memory = memories['ACMemory']
|
||||
self.actor = models['Actor'].to(self.device)
|
||||
self.critic = models['Critic'].to(self.device)
|
||||
self.actor_optim = torch.optim.Adam(self.actor.parameters(), lr=cfg['actor_lr'])
|
||||
self.critic_optim = torch.optim.Adam(self.critic.parameters(), lr=cfg['critic_lr'])
|
||||
self.actor_optim = torch.optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)
|
||||
self.critic_optim = torch.optim.Adam(self.critic.parameters(), lr=cfg.critic_lr)
|
||||
def sample_action(self,state):
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
dist = self.actor(state)
|
||||
value = self.critic(state) # note that 'dist' need require_grad=True
|
||||
value = value.detach().numpy().squeeze(0)[0]
|
||||
action = np.random.choice(self.n_actions, p=dist.detach().numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
return action,value,dist
|
||||
# state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
# dist = self.actor(state)
|
||||
# self.entropy = - np.sum(np.mean(dist.detach().cpu().numpy()) * np.log(dist.detach().cpu().numpy()))
|
||||
# value = self.critic(state) # note that 'dist' need require_grad=True
|
||||
# self.value = value.detach().cpu().numpy().squeeze(0)[0]
|
||||
# action = np.random.choice(self.n_actions, p=dist.detach().cpu().numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
# self.log_prob = torch.log(dist.squeeze(0)[action])
|
||||
if self.continuous:
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
mu, sigma = self.actor(state)
|
||||
dist = Normal(self.action_bound * mu.view(1,), sigma.view(1,))
|
||||
action = dist.sample()
|
||||
value = self.critic(state)
|
||||
# self.entropy = - np.sum(np.mean(dist.detach().cpu().numpy()) * np.log(dist.detach().cpu().numpy()))
|
||||
self.value = value.detach().cpu().numpy().squeeze(0)[0] # detach() to avoid gradient
|
||||
self.log_prob = dist.log_prob(action).squeeze(dim=0) # Tensor([0.])
|
||||
self.entropy = dist.entropy().cpu().detach().numpy().squeeze(0) # detach() to avoid gradient
|
||||
return action.cpu().detach().numpy()
|
||||
else:
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
probs = self.actor(state)
|
||||
dist = Categorical(probs)
|
||||
action = dist.sample() # Tensor([0])
|
||||
value = self.critic(state)
|
||||
self.value = value.detach().cpu().numpy().squeeze(0)[0] # detach() to avoid gradient
|
||||
self.log_prob = dist.log_prob(action).squeeze(dim=0) # Tensor([0.])
|
||||
self.entropy = dist.entropy().cpu().detach().numpy().squeeze(0) # detach() to avoid gradient
|
||||
return action.cpu().numpy().item()
|
||||
@torch.no_grad()
|
||||
def predict_action(self,state):
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
dist = self.actor(state)
|
||||
value = self.critic(state) # note that 'dist' need require_grad=True
|
||||
value = value.detach().numpy().squeeze(0)[0]
|
||||
action = np.random.choice(self.n_actions, p=dist.detach().numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
return action,value,dist
|
||||
if self.continuous:
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
mu, sigma = self.actor(state)
|
||||
dist = Normal(self.action_bound * mu.view(1,), sigma.view(1,))
|
||||
action = dist.sample()
|
||||
return action.cpu().detach().numpy()
|
||||
else:
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
dist = self.actor(state)
|
||||
# value = self.critic(state) # note that 'dist' need require_grad=True
|
||||
# value = value.detach().cpu().numpy().squeeze(0)[0]
|
||||
action = np.random.choice(self.n_actions, p=dist.detach().cpu().numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
return action
|
||||
def update(self,next_state,entropy):
|
||||
value_pool,log_prob_pool,reward_pool = self.memory.sample()
|
||||
value_pool = torch.tensor(value_pool, device=self.device)
|
||||
log_prob_pool = torch.stack(log_prob_pool)
|
||||
next_state = torch.tensor(next_state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
next_value = self.critic(next_state)
|
||||
returns = np.zeros_like(reward_pool)
|
||||
@@ -36,9 +81,7 @@ class A2C:
|
||||
next_value = reward_pool[t] + self.gamma * next_value # G(s_{t},a{t}) = r_{t+1} + gamma * V(s_{t+1})
|
||||
returns[t] = next_value
|
||||
returns = torch.tensor(returns, device=self.device)
|
||||
value_pool = torch.tensor(value_pool, device=self.device)
|
||||
advantages = returns - value_pool
|
||||
log_prob_pool = torch.stack(log_prob_pool)
|
||||
actor_loss = (-log_prob_pool * advantages).mean()
|
||||
critic_loss = 0.5 * advantages.pow(2).mean()
|
||||
tot_loss = actor_loss + critic_loss + 0.001 * entropy
|
||||
|
||||
@@ -1,14 +1,24 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-09-19 14:48:16
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-10-30 01:21:50
|
||||
Discription: #TODO,待更新模版
|
||||
'''
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
class A2C_2:
|
||||
def __init__(self,models,memories,cfg):
|
||||
self.n_actions = cfg['n_actions']
|
||||
self.gamma = cfg['gamma']
|
||||
self.device = torch.device(cfg['device'])
|
||||
self.n_actions = cfg.n_actions
|
||||
self.gamma = cfg.gamma
|
||||
self.device = torch.device(cfg.device)
|
||||
self.memory = memories['ACMemory']
|
||||
self.ac_net = models['ActorCritic'].to(self.device)
|
||||
self.ac_optimizer = torch.optim.Adam(self.ac_net.parameters(), lr=cfg['lr'])
|
||||
self.ac_optimizer = torch.optim.Adam(self.ac_net.parameters(), lr = cfg.lr)
|
||||
def sample_action(self,state):
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
value, dist = self.ac_net(state) # note that 'dist' need require_grad=True
|
||||
|
||||
21
projects/codes/A2C/config/CartPole-v1_A2C_Test.yaml
Normal file
@@ -0,0 +1,21 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
mode: test
|
||||
load_checkpoint: true
|
||||
load_path: Train_CartPole-v1_A2C_20221031-232138
|
||||
max_steps: 200
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
continuous: false
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
gamma: 0.99
|
||||
actor_lr: 0.0003
|
||||
critic_lr: 0.001
|
||||
target_update: 4
|
||||
19
projects/codes/A2C/config/CartPole-v1_A2C_Train.yaml
Normal file
@@ -0,0 +1,19 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
mode: train
|
||||
load_checkpoint: false
|
||||
load_path: Train_CartPole-v1_DQN_20221026-054757
|
||||
max_steps: 200
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 600
|
||||
algo_cfg:
|
||||
continuous: false
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
gamma: 0.0003
|
||||
lr: 0.001
|
||||
21
projects/codes/A2C/config/Pendulum-v1_A2C_Train.yaml
Normal file
@@ -0,0 +1,21 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: Pendulum-v1
|
||||
mode: train
|
||||
eval_per_episode: 200
|
||||
load_checkpoint: false
|
||||
load_path: Train_CartPole-v1_DQN_20221026-054757
|
||||
max_steps: 200
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
continuous: true
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
gamma: 0.0003
|
||||
actor_lr: 0.0003
|
||||
critic_lr: 0.001
|
||||
38
projects/codes/A2C/config/config.py
Normal file
@@ -0,0 +1,38 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-30 00:53:03
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-11-01 00:17:55
|
||||
Discription: default parameters of A2C
|
||||
'''
|
||||
from common.config import GeneralConfig,AlgoConfig
|
||||
|
||||
class GeneralConfigA2C(GeneralConfig):
|
||||
def __init__(self) -> None:
|
||||
self.env_name = "CartPole-v1" # name of environment
|
||||
self.algo_name = "A2C" # name of algorithm
|
||||
self.mode = "train" # train or test
|
||||
self.seed = 1 # random seed
|
||||
self.device = "cuda" # device to use
|
||||
self.train_eps = 1000 # number of episodes for training
|
||||
self.test_eps = 20 # number of episodes for testing
|
||||
self.max_steps = 200 # max steps for each episode
|
||||
self.load_checkpoint = False
|
||||
self.load_path = "tasks" # path to load model
|
||||
self.show_fig = False # show figure or not
|
||||
self.save_fig = True # save figure or not
|
||||
|
||||
class AlgoConfigA2C(AlgoConfig):
|
||||
def __init__(self) -> None:
|
||||
self.continuous = False # continuous or discrete action space
|
||||
self.hidden_dim = 256 # hidden_dim for MLP
|
||||
self.gamma = 0.99 # discount factor
|
||||
self.actor_lr = 3e-4 # learning rate of actor
|
||||
self.critic_lr = 1e-3 # learning rate of critic
|
||||
self.actor_hidden_dim = 256 # hidden_dim for actor MLP
|
||||
self.critic_hidden_dim = 256 # hidden_dim for critic MLP
|
||||
self.buffer_size = 100000 # size of replay buffer
|
||||
self.batch_size = 64 # batch size
|
||||
@@ -1,121 +0,0 @@
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import datetime
|
||||
import argparse
|
||||
import gym
|
||||
import torch
|
||||
import numpy as np
|
||||
from common.utils import all_seed
|
||||
from common.launcher import Launcher
|
||||
from common.memories import PGReplay
|
||||
from common.models import ActorSoftmax,Critic
|
||||
from envs.register import register_env
|
||||
from a2c import A2C
|
||||
|
||||
class Main(Launcher):
|
||||
def get_args(self):
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='A2C',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=1600,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--actor_lr',default=3e-4,type=float,help="learning rate of actor")
|
||||
parser.add_argument('--critic_lr',default=1e-3,type=float,help="learning rate of critic")
|
||||
parser.add_argument('--actor_hidden_dim',default=256,type=int,help="hidden of actor net")
|
||||
parser.add_argument('--critic_hidden_dim',default=256,type=int,help="hidden of critic net")
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--seed',default=10,type=int,help="seed")
|
||||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
|
||||
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
|
||||
}
|
||||
args = {**vars(args),**default_args} # type(dict)
|
||||
return args
|
||||
def env_agent_config(self,cfg):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg['env_name'])
|
||||
env = gym.make(cfg['env_name'])
|
||||
if cfg['seed'] !=0: # set random seed
|
||||
all_seed(env,seed=cfg["seed"])
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
print(f"n_states: {n_states}, n_actions: {n_actions}")
|
||||
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||||
models = {'Actor':ActorSoftmax(cfg['n_states'],cfg['n_actions'], hidden_dim = cfg['actor_hidden_dim']),'Critic':Critic(cfg['n_states'],1,hidden_dim=cfg['critic_hidden_dim'])}
|
||||
memories = {'ACMemory':PGReplay()}
|
||||
agent = A2C(models,memories,cfg)
|
||||
return env,agent
|
||||
def train(self,cfg,env,agent):
|
||||
print("Start training!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
|
||||
for i_ep in range(cfg['train_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
ep_entropy = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
action, value, dist = agent.sample_action(state) # sample action
|
||||
next_state, reward, done, _ = env.step(action) # update env and return transitions
|
||||
log_prob = torch.log(dist.squeeze(0)[action])
|
||||
entropy = -np.sum(np.mean(dist.detach().numpy()) * np.log(dist.detach().numpy()))
|
||||
agent.memory.push((value,log_prob,reward)) # save transitions
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_entropy += entropy
|
||||
ep_step += 1
|
||||
if done:
|
||||
break
|
||||
agent.update(next_state,ep_entropy) # update agent
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
if (i_ep+1)%10==0:
|
||||
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}, Steps:{ep_step}')
|
||||
print("Finish training!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
def test(self,cfg,env,agent):
|
||||
print("Start testing!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
for i_ep in range(cfg['test_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
action,_,_ = agent.predict_action(state) # predict action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
print(f"Episode: {i_ep+1}/{cfg['test_eps']}, Steps:{ep_step}, Reward: {ep_reward:.2f}")
|
||||
print("Finish testing!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,3 +1,13 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-09-19 14:48:16
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-10-30 01:21:15
|
||||
Discription: #TODO,待更新模版
|
||||
'''
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
|
||||
@@ -1,19 +0,0 @@
|
||||
{
|
||||
"algo_name": "A2C",
|
||||
"env_name": "CartPole-v0",
|
||||
"train_eps": 2000,
|
||||
"test_eps": 20,
|
||||
"ep_max_steps": 100000,
|
||||
"gamma": 0.99,
|
||||
"lr": 0.0003,
|
||||
"actor_hidden_dim": 256,
|
||||
"critic_hidden_dim": 256,
|
||||
"device": "cpu",
|
||||
"seed": 10,
|
||||
"show_fig": false,
|
||||
"save_fig": true,
|
||||
"result_path": "/Users/jj/Desktop/rl-tutorials/codes/A2C/outputs/CartPole-v0/20220829-135818/results/",
|
||||
"model_path": "/Users/jj/Desktop/rl-tutorials/codes/A2C/outputs/CartPole-v0/20220829-135818/models/",
|
||||
"n_states": 4,
|
||||
"n_actions": 2
|
||||
}
|
||||
|
Before Width: | Height: | Size: 44 KiB |
|
Before Width: | Height: | Size: 63 KiB |
@@ -1 +0,0 @@
|
||||
{"algo_name": "A2C", "env_name": "CartPole-v0", "train_eps": 1600, "test_eps": 20, "ep_max_steps": 100000, "gamma": 0.99, "actor_lr": 0.0003, "critic_lr": 0.001, "actor_hidden_dim": 256, "critic_hidden_dim": 256, "device": "cpu", "seed": 10, "show_fig": false, "save_fig": true, "result_path": "/Users/jj/Desktop/rl-tutorials/codes/A2C/outputs/CartPole-v0/20220829-143327/results/", "model_path": "/Users/jj/Desktop/rl-tutorials/codes/A2C/outputs/CartPole-v0/20220829-143327/models/", "n_states": 4, "n_actions": 2}
|
||||
|
Before Width: | Height: | Size: 41 KiB |
@@ -1,21 +0,0 @@
|
||||
episodes,rewards,steps
|
||||
0,177.0,177
|
||||
1,180.0,180
|
||||
2,200.0,200
|
||||
3,200.0,200
|
||||
4,167.0,167
|
||||
5,124.0,124
|
||||
6,128.0,128
|
||||
7,200.0,200
|
||||
8,200.0,200
|
||||
9,200.0,200
|
||||
10,186.0,186
|
||||
11,187.0,187
|
||||
12,200.0,200
|
||||
13,176.0,176
|
||||
14,200.0,200
|
||||
15,200.0,200
|
||||
16,200.0,200
|
||||
17,200.0,200
|
||||
18,185.0,185
|
||||
19,180.0,180
|
||||
|
|
Before Width: | Height: | Size: 66 KiB |
142
projects/codes/A2C/task0.py
Normal file
@@ -0,0 +1,142 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-30 01:19:43
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-11-01 01:21:06
|
||||
Discription:
|
||||
'''
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import gym
|
||||
from common.utils import all_seed,merge_class_attrs
|
||||
from common.launcher import Launcher
|
||||
from common.memories import PGReplay
|
||||
from common.models import ActorSoftmax,Critic
|
||||
from envs.register import register_env
|
||||
from a2c import A2C
|
||||
from config.config import GeneralConfigA2C,AlgoConfigA2C
|
||||
|
||||
class Main(Launcher):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigA2C())
|
||||
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigA2C())
|
||||
def env_agent_config(self,cfg,logger):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg.env_name)
|
||||
env = gym.make(cfg.env_name,new_step_api=True) # create env
|
||||
if cfg.seed !=0: # set random seed
|
||||
all_seed(env,seed = cfg.seed)
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
|
||||
# update to cfg paramters
|
||||
setattr(cfg, 'n_states', n_states)
|
||||
setattr(cfg, 'n_actions', n_actions)
|
||||
models = {'Actor':ActorSoftmax(n_states,n_actions, hidden_dim = cfg.actor_hidden_dim),'Critic':Critic(n_states,1,hidden_dim=cfg.critic_hidden_dim)}
|
||||
memories = {'ACMemory':PGReplay()}
|
||||
agent = A2C(models,memories,cfg)
|
||||
for k,v in models.items():
|
||||
logger.info(f"{k} model name: {type(v).__name__}")
|
||||
for k,v in memories.items():
|
||||
logger.info(f"{k} memory name: {type(v).__name__}")
|
||||
logger.info(f"agent name: {type(agent).__name__}")
|
||||
return env,agent
|
||||
def train_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
ep_entropy = 0 # entropy per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_entropy += agent.entropy
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
agent.update(next_state,ep_entropy) # update agent
|
||||
return agent,ep_reward,ep_step
|
||||
def test_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.predict_action(state) # predict action
|
||||
next_state, reward, terminated, truncated , info = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
return agent,ep_reward,ep_step
|
||||
# def train(self,cfg,env,agent,logger):
|
||||
# logger.info("Start training!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.train_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0 # step per episode
|
||||
# ep_entropy = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.sample_action(state) # sample action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
# agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
# state = next_state # update state
|
||||
# ep_reward += reward
|
||||
# ep_entropy += agent.entropy
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# agent.update(next_state,ep_entropy) # update agent
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish training!")
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
# def test(self,cfg,env,agent,logger):
|
||||
# logger.info("Start testing!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.test_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.predict_action(state) # predict action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action)
|
||||
# state = next_state
|
||||
# ep_reward += reward
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish testing!")
|
||||
# env.close()
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||
142
projects/codes/A2C/task1.py
Normal file
@@ -0,0 +1,142 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-30 01:19:43
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-11-01 01:21:12
|
||||
Discription: continuous action space
|
||||
'''
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import gym
|
||||
from common.utils import all_seed,merge_class_attrs
|
||||
from common.launcher import Launcher
|
||||
from common.memories import PGReplay
|
||||
from common.models import ActorSoftmaxTanh,Critic
|
||||
from envs.register import register_env
|
||||
from a2c import A2C
|
||||
from config.config import GeneralConfigA2C,AlgoConfigA2C
|
||||
|
||||
class Main(Launcher):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigA2C())
|
||||
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigA2C())
|
||||
def env_agent_config(self,cfg,logger):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg.env_name)
|
||||
env = gym.make(cfg.env_name,new_step_api=True) # create env
|
||||
if cfg.seed !=0: # set random seed
|
||||
all_seed(env,seed = cfg.seed)
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
|
||||
# update to cfg paramters
|
||||
setattr(cfg, 'n_states', n_states)
|
||||
setattr(cfg, 'n_actions', n_actions)
|
||||
models = {'Actor':ActorSoftmaxTanh(n_states,n_actions, hidden_dim = cfg.actor_hidden_dim),'Critic':Critic(n_states,1,hidden_dim=cfg.critic_hidden_dim)}
|
||||
memories = {'ACMemory':PGReplay()}
|
||||
agent = A2C(models,memories,cfg)
|
||||
for k,v in models.items():
|
||||
logger.info(f"{k} model name: {type(v).__name__}")
|
||||
for k,v in memories.items():
|
||||
logger.info(f"{k} memory name: {type(v).__name__}")
|
||||
logger.info(f"agent name: {type(agent).__name__}")
|
||||
return env,agent
|
||||
def train_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
ep_entropy = 0 # entropy per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_entropy += agent.entropy
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
agent.update(next_state,ep_entropy) # update agent
|
||||
return agent,ep_reward,ep_step
|
||||
def test_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.predict_action(state) # predict action
|
||||
next_state, reward, terminated, truncated , info = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
return agent,ep_reward,ep_step
|
||||
# def train(self,cfg,env,agent,logger):
|
||||
# logger.info("Start training!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.train_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0 # step per episode
|
||||
# ep_entropy = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.sample_action(state) # sample action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
# agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
# state = next_state # update state
|
||||
# ep_reward += reward
|
||||
# ep_entropy += agent.entropy
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# agent.update(next_state,ep_entropy) # update agent
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish training!")
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
# def test(self,cfg,env,agent,logger):
|
||||
# logger.info("Start testing!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.test_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.predict_action(state) # predict action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action)
|
||||
# state = next_state
|
||||
# ep_reward += reward
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish testing!")
|
||||
# env.close()
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||
149
projects/codes/A2C/task2.py
Normal file
@@ -0,0 +1,149 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-30 01:19:43
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-11-01 00:08:22
|
||||
Discription: the only difference from task0.py is that the actor here we use ActorSoftmaxTanh instead of ActorSoftmax with ReLU
|
||||
'''
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import numpy as np
|
||||
from common.utils import all_seed,merge_class_attrs
|
||||
from common.launcher import Launcher
|
||||
from common.memories import PGReplay
|
||||
from common.models import ActorNormal,Critic
|
||||
from envs.register import register_env
|
||||
from a2c import A2C
|
||||
from config.config import GeneralConfigA2C,AlgoConfigA2C
|
||||
|
||||
class Main(Launcher):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigA2C())
|
||||
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigA2C())
|
||||
def env_agent_config(self,cfg,logger):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg.env_name)
|
||||
env = gym.make(cfg.env_name,new_step_api=True) # create env
|
||||
if cfg.seed !=0: # set random seed
|
||||
all_seed(env,seed = cfg.seed)
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
try:
|
||||
n_actions = env.action_space.n # action dimension
|
||||
except AttributeError:
|
||||
n_actions = env.action_space.shape[0]
|
||||
logger.info(f"action bound: {abs(env.action_space.low.item())}")
|
||||
setattr(cfg, 'action_bound', abs(env.action_space.low.item()))
|
||||
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
|
||||
# update to cfg paramters
|
||||
setattr(cfg, 'n_states', n_states)
|
||||
setattr(cfg, 'n_actions', n_actions)
|
||||
models = {'Actor':ActorNormal(n_states,n_actions, hidden_dim = cfg.actor_hidden_dim),'Critic':Critic(n_states,1,hidden_dim=cfg.critic_hidden_dim)}
|
||||
memories = {'ACMemory':PGReplay()}
|
||||
agent = A2C(models,memories,cfg)
|
||||
for k,v in models.items():
|
||||
logger.info(f"{k} model name: {type(v).__name__}")
|
||||
for k,v in memories.items():
|
||||
logger.info(f"{k} memory name: {type(v).__name__}")
|
||||
logger.info(f"agent name: {type(agent).__name__}")
|
||||
return env,agent
|
||||
def train_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
ep_entropy = 0 # entropy per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_entropy += agent.entropy
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
agent.update(next_state,ep_entropy) # update agent
|
||||
return agent,ep_reward,ep_step
|
||||
def test_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.predict_action(state) # predict action
|
||||
next_state, reward, terminated, truncated , info = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
return agent,ep_reward,ep_step
|
||||
# def train(self,cfg,env,agent,logger):
|
||||
# logger.info("Start training!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.train_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0 # step per episode
|
||||
# ep_entropy = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.sample_action(state) # sample action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
# agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
# state = next_state # update state
|
||||
# ep_reward += reward
|
||||
# ep_entropy += agent.entropy
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# agent.update(next_state,ep_entropy) # update agent
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish training!")
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
# def test(self,cfg,env,agent,logger):
|
||||
# logger.info("Start testing!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.test_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.predict_action(state) # predict action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action)
|
||||
# state = next_state
|
||||
# ep_reward += reward
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish testing!")
|
||||
# env.close()
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||