add double_dqn
This commit is contained in:
143
codes/double_dqn/main.py
Normal file
143
codes/double_dqn/main.py
Normal file
@@ -0,0 +1,143 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:48:57
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-09-01 22:54:23
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import gym
|
||||
import torch
|
||||
from dqn import DQN
|
||||
from plot import plot
|
||||
import argparse
|
||||
|
||||
def get_args():
|
||||
'''模型参数
|
||||
'''
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--gamma", default=0.99,
|
||||
type=float) # q-learning中的gamma
|
||||
parser.add_argument("--epsilon_start", default=0.95,
|
||||
type=float) # 基于贪心选择action对应的参数epsilon
|
||||
parser.add_argument("--epsilon_end", default=0.05, type=float)
|
||||
parser.add_argument("--epsilon_decay", default=500, type=float)
|
||||
parser.add_argument("--policy_lr", default=0.01, type=float)
|
||||
parser.add_argument("--memory_capacity", default=1000,
|
||||
type=int, help="capacity of Replay Memory")
|
||||
|
||||
parser.add_argument("--batch_size", default=32, type=int,
|
||||
help="batch size of memory sampling")
|
||||
parser.add_argument("--train_eps", default=200, type=int) # 训练的最大episode数目
|
||||
parser.add_argument("--train_steps", default=200, type=int) # 训练每个episode的长度
|
||||
parser.add_argument("--eval_eps", default=200, type=int) # 训练的最大episode数目
|
||||
parser.add_argument("--eval_steps", default=200, type=int) # 训练每个episode的长度
|
||||
parser.add_argument("--target_update", default=2, type=int,
|
||||
help="when(every default 10 eisodes) to update target net ")
|
||||
config = parser.parse_args()
|
||||
|
||||
return config
|
||||
|
||||
def train():
|
||||
cfg = get_args()
|
||||
# if gpu is to be used
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||||
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要
|
||||
env.seed(1) # 设置env随机种子
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,
|
||||
epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size)
|
||||
rewards = []
|
||||
moving_average_rewards = []
|
||||
ep_steps = []
|
||||
for i_episode in range(1, cfg.train_eps+1):
|
||||
state = env.reset() # reset环境状态
|
||||
ep_reward = 0
|
||||
for i_step in range(1, cfg.train_steps+1):
|
||||
action = agent.select_action(state) # 根据当前环境state选择action
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory
|
||||
state = next_state # 跳转到下一个状态
|
||||
agent.update() # 每步更新网络
|
||||
if done:
|
||||
break
|
||||
# 更新target network,复制DQN中的所有weights and biases
|
||||
if i_episode % cfg.target_update == 0:
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
print('Episode:', i_episode, ' Reward: %i' %
|
||||
int(ep_reward), 'n_steps:', i_step, 'done: ', done,' Explore: %.2f' % agent.epsilon)
|
||||
ep_steps.append(i_step)
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动窗口的reward
|
||||
if i_episode == 1:
|
||||
moving_average_rewards.append(ep_reward)
|
||||
else:
|
||||
moving_average_rewards.append(
|
||||
0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||||
import os
|
||||
import numpy as np
|
||||
save_path = os.path.dirname(__file__)+"/saved_model/"
|
||||
if not os.path.exists(save_path):
|
||||
os.mkdir(save_path)
|
||||
agent.save_model(save_path+'checkpoint.pth')
|
||||
# 存储reward等相关结果
|
||||
output_path = os.path.dirname(__file__)+"/result/"
|
||||
# 检测是否存在文件夹
|
||||
if not os.path.exists(output_path):
|
||||
os.mkdir(output_path)
|
||||
np.save(output_path+"rewards.npy", rewards)
|
||||
np.save(output_path+"moving_average_rewards.npy", moving_average_rewards)
|
||||
np.save(output_path+"steps.npy", ep_steps)
|
||||
print('Complete!')
|
||||
plot(rewards)
|
||||
plot(moving_average_rewards, ylabel="moving_average_rewards")
|
||||
plot(ep_steps, ylabel="steps_of_each_episode")
|
||||
|
||||
def eval():
|
||||
cfg = get_args()
|
||||
# if gpu is to be used
|
||||
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要
|
||||
env.seed(1) # 设置env随机种子
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
agent = DQN(n_states=n_states, n_actions=n_actions, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,
|
||||
epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size)
|
||||
import os
|
||||
save_path = os.path.dirname(__file__)+"/saved_model/"
|
||||
if not os.path.exists(save_path):
|
||||
os.mkdir(save_path)
|
||||
agent.load_model(save_path+'checkpoint.pth')
|
||||
rewards = []
|
||||
moving_average_rewards = []
|
||||
ep_steps = []
|
||||
for i_episode in range(1, cfg.eval_eps+1):
|
||||
state = env.reset() # reset环境状态
|
||||
ep_reward = 0
|
||||
for i_step in range(1, cfg.eval_steps+1):
|
||||
action = agent.select_action(state) # 根据当前环境state选择action
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||||
ep_reward += reward
|
||||
state = next_state # 跳转到下一个状态
|
||||
if done:
|
||||
break
|
||||
print('Episode:', i_episode, ' Reward: %i' %
|
||||
int(ep_reward), 'n_steps:', i_step, 'done: ', done,' Explore: %.2f' % agent.epsilon)
|
||||
ep_steps.append(i_step)
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动窗口的reward
|
||||
if i_episode == 1:
|
||||
moving_average_rewards.append(ep_reward)
|
||||
else:
|
||||
moving_average_rewards.append(
|
||||
0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||||
plot(rewards,save_fig=False)
|
||||
plot(moving_average_rewards, ylabel="moving_average_rewards",save_fig=False)
|
||||
plot(ep_steps, ylabel="steps_of_each_episode",save_fig=False)
|
||||
if __name__ == "__main__":
|
||||
# train()
|
||||
eval()
|
||||
Reference in New Issue
Block a user