add double_dqn

This commit is contained in:
JohnJim0816
2020-09-08 13:22:32 +08:00
parent 834cd16117
commit db15149b39
12 changed files with 363 additions and 0 deletions

143
codes/double_dqn/main.py Normal file
View File

@@ -0,0 +1,143 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:48:57
@LastEditor: John
LastEditTime: 2020-09-01 22:54:23
@Discription:
@Environment: python 3.7.7
'''
import gym
import torch
from dqn import DQN
from plot import plot
import argparse
def get_args():
'''模型参数
'''
parser = argparse.ArgumentParser()
parser.add_argument("--gamma", default=0.99,
type=float) # q-learning中的gamma
parser.add_argument("--epsilon_start", default=0.95,
type=float) # 基于贪心选择action对应的参数epsilon
parser.add_argument("--epsilon_end", default=0.05, type=float)
parser.add_argument("--epsilon_decay", default=500, type=float)
parser.add_argument("--policy_lr", default=0.01, type=float)
parser.add_argument("--memory_capacity", default=1000,
type=int, help="capacity of Replay Memory")
parser.add_argument("--batch_size", default=32, type=int,
help="batch size of memory sampling")
parser.add_argument("--train_eps", default=200, type=int) # 训练的最大episode数目
parser.add_argument("--train_steps", default=200, type=int) # 训练每个episode的长度
parser.add_argument("--eval_eps", default=200, type=int) # 训练的最大episode数目
parser.add_argument("--eval_steps", default=200, type=int) # 训练每个episode的长度
parser.add_argument("--target_update", default=2, type=int,
help="when(every default 10 eisodes) to update target net ")
config = parser.parse_args()
return config
def train():
cfg = get_args()
# if gpu is to be used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym此处一般不需要
env.seed(1) # 设置env随机种子
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,
epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size)
rewards = []
moving_average_rewards = []
ep_steps = []
for i_episode in range(1, cfg.train_eps+1):
state = env.reset() # reset环境状态
ep_reward = 0
for i_step in range(1, cfg.train_steps+1):
action = agent.select_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action) # 更新环境参数
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory
state = next_state # 跳转到下一个状态
agent.update() # 每步更新网络
if done:
break
# 更新target network复制DQN中的所有weights and biases
if i_episode % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
print('Episode:', i_episode, ' Reward: %i' %
int(ep_reward), 'n_steps:', i_step, 'done: ', done,' Explore: %.2f' % agent.epsilon)
ep_steps.append(i_step)
rewards.append(ep_reward)
# 计算滑动窗口的reward
if i_episode == 1:
moving_average_rewards.append(ep_reward)
else:
moving_average_rewards.append(
0.9*moving_average_rewards[-1]+0.1*ep_reward)
import os
import numpy as np
save_path = os.path.dirname(__file__)+"/saved_model/"
if not os.path.exists(save_path):
os.mkdir(save_path)
agent.save_model(save_path+'checkpoint.pth')
# 存储reward等相关结果
output_path = os.path.dirname(__file__)+"/result/"
# 检测是否存在文件夹
if not os.path.exists(output_path):
os.mkdir(output_path)
np.save(output_path+"rewards.npy", rewards)
np.save(output_path+"moving_average_rewards.npy", moving_average_rewards)
np.save(output_path+"steps.npy", ep_steps)
print('Complete')
plot(rewards)
plot(moving_average_rewards, ylabel="moving_average_rewards")
plot(ep_steps, ylabel="steps_of_each_episode")
def eval():
cfg = get_args()
# if gpu is to be used
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym此处一般不需要
env.seed(1) # 设置env随机种子
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
agent = DQN(n_states=n_states, n_actions=n_actions, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,
epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size)
import os
save_path = os.path.dirname(__file__)+"/saved_model/"
if not os.path.exists(save_path):
os.mkdir(save_path)
agent.load_model(save_path+'checkpoint.pth')
rewards = []
moving_average_rewards = []
ep_steps = []
for i_episode in range(1, cfg.eval_eps+1):
state = env.reset() # reset环境状态
ep_reward = 0
for i_step in range(1, cfg.eval_steps+1):
action = agent.select_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action) # 更新环境参数
ep_reward += reward
state = next_state # 跳转到下一个状态
if done:
break
print('Episode:', i_episode, ' Reward: %i' %
int(ep_reward), 'n_steps:', i_step, 'done: ', done,' Explore: %.2f' % agent.epsilon)
ep_steps.append(i_step)
rewards.append(ep_reward)
# 计算滑动窗口的reward
if i_episode == 1:
moving_average_rewards.append(ep_reward)
else:
moving_average_rewards.append(
0.9*moving_average_rewards[-1]+0.1*ep_reward)
plot(rewards,save_fig=False)
plot(moving_average_rewards, ylabel="moving_average_rewards",save_fig=False)
plot(ep_steps, ylabel="steps_of_each_episode",save_fig=False)
if __name__ == "__main__":
# train()
eval()