diff --git a/codes/double_dqn/dqn.py b/codes/double_dqn/dqn.py new file mode 100644 index 0000000..4a99719 --- /dev/null +++ b/codes/double_dqn/dqn.py @@ -0,0 +1,121 @@ +#!/usr/bin/env python +# coding=utf-8 +''' +@Author: John +@Email: johnjim0816@gmail.com +@Date: 2020-06-12 00:50:49 +@LastEditor: John +LastEditTime: 2020-09-01 22:54:02 +@Discription: +@Environment: python 3.7.7 +''' +'''off-policy +''' + + + + +import torch +import torch.nn as nn +import torch.optim as optim +import torch.nn.functional as F +import random +import math +import numpy as np +from memory import ReplayBuffer +from model import FCN +class DQN: + def __init__(self, n_states, n_actions, gamma=0.99, epsilon_start=0.9, epsilon_end=0.05, epsilon_decay=200, memory_capacity=10000, policy_lr=0.01, batch_size=128, device="cpu"): + self.actions_count = 0 + self.n_actions = n_actions # 总的动作个数 + self.device = device # 设备,cpu或gpu等 + self.gamma = gamma + # e-greedy策略相关参数 + self.epsilon = 0 + self.epsilon_start = epsilon_start + self.epsilon_end = epsilon_end + self.epsilon_decay = epsilon_decay + self.batch_size = batch_size + self.policy_net = FCN(n_states, n_actions).to(self.device) + self.target_net = FCN(n_states, n_actions).to(self.device) + # target_net的初始模型参数完全复制policy_net + self.target_net.load_state_dict(self.policy_net.state_dict()) + self.target_net.eval() # 不启用 BatchNormalization 和 Dropout + # 可查parameters()与state_dict()的区别,前者require_grad=True + self.optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr) + self.loss = 0 + self.memory = ReplayBuffer(memory_capacity) + + def select_action(self, state): + '''选择动作 + Args: + state [array]: [description] + Returns: + action [array]: [description] + ''' + self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \ + math.exp(-1. * self.actions_count / self.epsilon_decay) + self.actions_count += 1 + if random.random() > self.epsilon: + with torch.no_grad(): + # 先转为张量便于丢给神经网络,state元素数据原本为float64 + # 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价 + state = torch.tensor( + [state], device=self.device, dtype=torch.float32) + # 如tensor([[-0.0798, -0.0079]], grad_fn=) + q_value = self.policy_net(state) + # tensor.max(1)返回每行的最大值以及对应的下标, + # 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0])) + # 所以tensor.max(1)[1]返回最大值对应的下标,即action + action = q_value.max(1)[1].item() + else: + action = random.randrange(self.n_actions) + return action + + def update(self): + + if len(self.memory) < self.batch_size: + return + # 从memory中随机采样transition + state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample( + self.batch_size) + # 转为张量 + # 例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]]) + state_batch = torch.tensor( + state_batch, device=self.device, dtype=torch.float) + action_batch = torch.tensor(action_batch, device=self.device).unsqueeze( + 1) # 例如tensor([[1],...,[0]]) + reward_batch = torch.tensor( + reward_batch, device=self.device, dtype=torch.float) # tensor([1., 1.,...,1]) + next_state_batch = torch.tensor( + next_state_batch, device=self.device, dtype=torch.float) + done_batch = torch.tensor(np.float32( + done_batch), device=self.device).unsqueeze(1) # 将bool转为float然后转为张量 + + # 计算当前(s_t,a)对应的Q(s_t, a) + # 关于torch.gather,对于a=torch.Tensor([[1,2],[3,4]]) + # 那么a.gather(1,torch.Tensor([[0],[1]]))=torch.Tensor([[1],[3]]) + q_values = self.policy_net(state_batch).gather( + dim=1, index=action_batch) # 等价于self.forward + # 计算所有next states的V(s_{t+1}),即通过target_net中选取reward最大的对应states + next_state_values = self.target_net( + next_state_batch).max(1)[0].detach() # 比如tensor([ 0.0060, -0.0171,...,]) + # 计算 expected_q_value + # 对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward + expected_q_values = reward_batch + self.gamma * \ + next_state_values * (1-done_batch[0]) + # self.loss = F.smooth_l1_loss(q_values,expected_q_values.unsqueeze(1)) # 计算 Huber loss + self.loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算 均方误差loss + # 优化模型 + self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step + # loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分 + self.loss.backward() + for param in self.policy_net.parameters(): # clip防止梯度爆炸 + param.grad.data.clamp_(-1, 1) + self.optimizer.step() # 更新模型 + + def save_model(self,path): + torch.save(self.target_net.state_dict(), path) + + def load_model(self,path): + self.policy_net.load_state_dict(torch.load(path)) \ No newline at end of file diff --git a/codes/double_dqn/main.py b/codes/double_dqn/main.py new file mode 100644 index 0000000..89e3d08 --- /dev/null +++ b/codes/double_dqn/main.py @@ -0,0 +1,143 @@ +#!/usr/bin/env python +# coding=utf-8 +''' +@Author: John +@Email: johnjim0816@gmail.com +@Date: 2020-06-12 00:48:57 +@LastEditor: John +LastEditTime: 2020-09-01 22:54:23 +@Discription: +@Environment: python 3.7.7 +''' +import gym +import torch +from dqn import DQN +from plot import plot +import argparse + +def get_args(): + '''模型参数 + ''' + parser = argparse.ArgumentParser() + parser.add_argument("--gamma", default=0.99, + type=float) # q-learning中的gamma + parser.add_argument("--epsilon_start", default=0.95, + type=float) # 基于贪心选择action对应的参数epsilon + parser.add_argument("--epsilon_end", default=0.05, type=float) + parser.add_argument("--epsilon_decay", default=500, type=float) + parser.add_argument("--policy_lr", default=0.01, type=float) + parser.add_argument("--memory_capacity", default=1000, + type=int, help="capacity of Replay Memory") + + parser.add_argument("--batch_size", default=32, type=int, + help="batch size of memory sampling") + parser.add_argument("--train_eps", default=200, type=int) # 训练的最大episode数目 + parser.add_argument("--train_steps", default=200, type=int) # 训练每个episode的长度 + parser.add_argument("--eval_eps", default=200, type=int) # 训练的最大episode数目 + parser.add_argument("--eval_steps", default=200, type=int) # 训练每个episode的长度 + parser.add_argument("--target_update", default=2, type=int, + help="when(every default 10 eisodes) to update target net ") + config = parser.parse_args() + + return config + +def train(): + cfg = get_args() + # if gpu is to be used + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu + env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要 + env.seed(1) # 设置env随机种子 + n_states = env.observation_space.shape[0] + n_actions = env.action_space.n + agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start, + epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size) + rewards = [] + moving_average_rewards = [] + ep_steps = [] + for i_episode in range(1, cfg.train_eps+1): + state = env.reset() # reset环境状态 + ep_reward = 0 + for i_step in range(1, cfg.train_steps+1): + action = agent.select_action(state) # 根据当前环境state选择action + next_state, reward, done, _ = env.step(action) # 更新环境参数 + ep_reward += reward + agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory + state = next_state # 跳转到下一个状态 + agent.update() # 每步更新网络 + if done: + break + # 更新target network,复制DQN中的所有weights and biases + if i_episode % cfg.target_update == 0: + agent.target_net.load_state_dict(agent.policy_net.state_dict()) + print('Episode:', i_episode, ' Reward: %i' % + int(ep_reward), 'n_steps:', i_step, 'done: ', done,' Explore: %.2f' % agent.epsilon) + ep_steps.append(i_step) + rewards.append(ep_reward) + # 计算滑动窗口的reward + if i_episode == 1: + moving_average_rewards.append(ep_reward) + else: + moving_average_rewards.append( + 0.9*moving_average_rewards[-1]+0.1*ep_reward) + import os + import numpy as np + save_path = os.path.dirname(__file__)+"/saved_model/" + if not os.path.exists(save_path): + os.mkdir(save_path) + agent.save_model(save_path+'checkpoint.pth') + # 存储reward等相关结果 + output_path = os.path.dirname(__file__)+"/result/" + # 检测是否存在文件夹 + if not os.path.exists(output_path): + os.mkdir(output_path) + np.save(output_path+"rewards.npy", rewards) + np.save(output_path+"moving_average_rewards.npy", moving_average_rewards) + np.save(output_path+"steps.npy", ep_steps) + print('Complete!') + plot(rewards) + plot(moving_average_rewards, ylabel="moving_average_rewards") + plot(ep_steps, ylabel="steps_of_each_episode") + +def eval(): + cfg = get_args() + # if gpu is to be used + env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要 + env.seed(1) # 设置env随机种子 + n_states = env.observation_space.shape[0] + n_actions = env.action_space.n + agent = DQN(n_states=n_states, n_actions=n_actions, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start, + epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size) + import os + save_path = os.path.dirname(__file__)+"/saved_model/" + if not os.path.exists(save_path): + os.mkdir(save_path) + agent.load_model(save_path+'checkpoint.pth') + rewards = [] + moving_average_rewards = [] + ep_steps = [] + for i_episode in range(1, cfg.eval_eps+1): + state = env.reset() # reset环境状态 + ep_reward = 0 + for i_step in range(1, cfg.eval_steps+1): + action = agent.select_action(state) # 根据当前环境state选择action + next_state, reward, done, _ = env.step(action) # 更新环境参数 + ep_reward += reward + state = next_state # 跳转到下一个状态 + if done: + break + print('Episode:', i_episode, ' Reward: %i' % + int(ep_reward), 'n_steps:', i_step, 'done: ', done,' Explore: %.2f' % agent.epsilon) + ep_steps.append(i_step) + rewards.append(ep_reward) + # 计算滑动窗口的reward + if i_episode == 1: + moving_average_rewards.append(ep_reward) + else: + moving_average_rewards.append( + 0.9*moving_average_rewards[-1]+0.1*ep_reward) + plot(rewards,save_fig=False) + plot(moving_average_rewards, ylabel="moving_average_rewards",save_fig=False) + plot(ep_steps, ylabel="steps_of_each_episode",save_fig=False) +if __name__ == "__main__": + # train() + eval() diff --git a/codes/double_dqn/memory.py b/codes/double_dqn/memory.py new file mode 100644 index 0000000..657bfc0 --- /dev/null +++ b/codes/double_dqn/memory.py @@ -0,0 +1,35 @@ +#!/usr/bin/env python +# coding=utf-8 +''' +@Author: John +@Email: johnjim0816@gmail.com +@Date: 2020-06-10 15:27:16 +@LastEditor: John +@LastEditTime: 2020-06-14 11:36:24 +@Discription: +@Environment: python 3.7.7 +''' +import random +import numpy as np + +class ReplayBuffer: + + def __init__(self, capacity): + self.capacity = capacity + self.buffer = [] + self.position = 0 + + def push(self, state, action, reward, next_state, done): + if len(self.buffer) < self.capacity: + self.buffer.append(None) + self.buffer[self.position] = (state, action, reward, next_state, done) + self.position = (self.position + 1) % self.capacity + + def sample(self, batch_size): + batch = random.sample(self.buffer, batch_size) + state, action, reward, next_state, done = zip(*batch) + return state, action, reward, next_state, done + + def __len__(self): + return len(self.buffer) + diff --git a/codes/double_dqn/model.py b/codes/double_dqn/model.py new file mode 100644 index 0000000..a4642d8 --- /dev/null +++ b/codes/double_dqn/model.py @@ -0,0 +1,30 @@ +#!/usr/bin/env python +# coding=utf-8 +''' +@Author: John +@Email: johnjim0816@gmail.com +@Date: 2020-06-12 00:47:02 +@LastEditor: John +LastEditTime: 2020-08-19 16:55:54 +@Discription: +@Environment: python 3.7.7 +''' +import torch.nn as nn +import torch.nn.functional as F + +class FCN(nn.Module): + def __init__(self, n_states=4, n_actions=18): + """ 初始化q网络,为全连接网络 + n_states: 输入的feature即环境的state数目 + n_actions: 输出的action总个数 + """ + super(FCN, self).__init__() + self.fc1 = nn.Linear(n_states, 128) # 输入层 + self.fc2 = nn.Linear(128, 128) # 隐藏层 + self.fc3 = nn.Linear(128, n_actions) # 输出层 + + def forward(self, x): + # 各层对应的激活函数 + x = F.relu(self.fc1(x)) + x = F.relu(self.fc2(x)) + return self.fc3(x) \ No newline at end of file diff --git a/codes/double_dqn/plot.py b/codes/double_dqn/plot.py new file mode 100644 index 0000000..63b453a --- /dev/null +++ b/codes/double_dqn/plot.py @@ -0,0 +1,34 @@ +#!/usr/bin/env python +# coding=utf-8 +''' +@Author: John +@Email: johnjim0816@gmail.com +@Date: 2020-06-11 16:30:09 +@LastEditor: John +LastEditTime: 2020-09-01 22:46:43 +@Discription: +@Environment: python 3.7.7 +''' +import matplotlib.pyplot as plt +import pandas as pd +import seaborn as sns +import numpy as np +import os + +def plot(item,ylabel='rewards',save_fig = True): + sns.set() + plt.figure() + plt.plot(np.arange(len(item)), item) + plt.title(ylabel+' of DQN') + plt.ylabel(ylabel) + plt.xlabel('episodes') + if save_fig: + plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png") + plt.show() +if __name__ == "__main__": + + output_path = os.path.dirname(__file__)+"/result/" + rewards=np.load(output_path+"rewards.npy", ) + moving_average_rewards=np.load(output_path+"moving_average_rewards.npy",) + plot(rewards) + plot(moving_average_rewards,ylabel='moving_average_rewards') diff --git a/codes/double_dqn/result/moving_average_rewards.npy b/codes/double_dqn/result/moving_average_rewards.npy new file mode 100644 index 0000000..ed5b16d Binary files /dev/null and b/codes/double_dqn/result/moving_average_rewards.npy differ diff --git a/codes/double_dqn/result/moving_average_rewards.png b/codes/double_dqn/result/moving_average_rewards.png new file mode 100644 index 0000000..e7e2e55 Binary files /dev/null and b/codes/double_dqn/result/moving_average_rewards.png differ diff --git a/codes/double_dqn/result/rewards.npy b/codes/double_dqn/result/rewards.npy new file mode 100644 index 0000000..1f145c8 Binary files /dev/null and b/codes/double_dqn/result/rewards.npy differ diff --git a/codes/double_dqn/result/rewards.png b/codes/double_dqn/result/rewards.png new file mode 100644 index 0000000..c0fdab9 Binary files /dev/null and b/codes/double_dqn/result/rewards.png differ diff --git a/codes/double_dqn/result/steps.npy b/codes/double_dqn/result/steps.npy new file mode 100644 index 0000000..a383da1 Binary files /dev/null and b/codes/double_dqn/result/steps.npy differ diff --git a/codes/double_dqn/result/steps_of_each_episode.png b/codes/double_dqn/result/steps_of_each_episode.png new file mode 100644 index 0000000..405f2b0 Binary files /dev/null and b/codes/double_dqn/result/steps_of_each_episode.png differ diff --git a/codes/double_dqn/saved_model/checkpoint.pth b/codes/double_dqn/saved_model/checkpoint.pth new file mode 100644 index 0000000..324a630 Binary files /dev/null and b/codes/double_dqn/saved_model/checkpoint.pth differ