update q-learning
This commit is contained in:
@@ -16,4 +16,23 @@
|
||||
|
||||

|
||||
|
||||
由于从起点到终点最少需要13步,每步得到-1的reward,因此最佳训练算法下,每个episode下reward总和应该为-13。
|
||||
由于从起点到终点最少需要13步,每步得到-1的reward,因此最佳训练算法下,每个episode下reward总和应该为-13。
|
||||
|
||||
|
||||
## 使用
|
||||
|
||||
train:
|
||||
|
||||
```python
|
||||
python main.py
|
||||
```
|
||||
|
||||
eval:
|
||||
|
||||
```python
|
||||
python main.py --train 0
|
||||
```
|
||||
tensorboard:
|
||||
```python
|
||||
tensorboard --logdir logs
|
||||
```
|
||||
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-10-07 20:48:29
|
||||
LastEditTime: 2020-11-24 20:22:03
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -81,14 +81,11 @@ class QLearning(object):
|
||||
self.Q_table[next_obs, :]) # Q_table-learning
|
||||
self.Q_table[obs, action] += self.lr * (Q_target - Q_predict) # 修正q
|
||||
|
||||
def save(self):
|
||||
def save_model(self,path):
|
||||
'''把 Q表格 的数据保存到文件中
|
||||
'''
|
||||
npy_file = './result/Q_table.npy'
|
||||
np.save(npy_file, self.Q_table)
|
||||
print(npy_file + ' saved.')
|
||||
def load(self, npy_file='./result/Q_table.npy'):
|
||||
np.save(path, self.Q_table)
|
||||
def load_model(self, path):
|
||||
'''从文件中读取数据到 Q表格
|
||||
'''
|
||||
self.Q_table = np.load(npy_file)
|
||||
print(npy_file + 'loaded.')
|
||||
self.Q_table = np.load(path)
|
||||
|
||||
@@ -18,10 +18,14 @@ import gym
|
||||
import turtle
|
||||
import numpy as np
|
||||
|
||||
# turtle tutorial : https://docs.python.org/3.3/library/turtle.html
|
||||
def env_init_1():
|
||||
''' 初始化CliffWalking-v0环境
|
||||
'''
|
||||
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
||||
env = CliffWalkingWapper(env)
|
||||
return env
|
||||
|
||||
|
||||
def GridWorld(gridmap=None, is_slippery=False):
|
||||
def env_init_2(gridmap=None, is_slippery=False):
|
||||
if gridmap is None:
|
||||
gridmap = ['SFFF', 'FHFH', 'FFFH', 'HFFG']
|
||||
env = gym.make("FrozenLake-v0", desc=gridmap, is_slippery=False)
|
||||
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-10-07 21:05:33
|
||||
LastEditTime: 2020-11-24 19:56:23
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -26,35 +26,23 @@ Environment:
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import gym
|
||||
from gridworld import CliffWalkingWapper, FrozenLakeWapper
|
||||
from env import CliffWalkingWapper, FrozenLakeWapper
|
||||
from agent import QLearning
|
||||
import os
|
||||
import numpy as np
|
||||
import argparse
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
def get_args():
|
||||
'''训练的模型参数
|
||||
'''
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--gamma", default=0.9,
|
||||
type=float, help="reward 的衰减率")
|
||||
parser.add_argument("--epsilon_start", default=0.9,
|
||||
type=float,help="e-greedy策略中初始epsilon")
|
||||
parser.add_argument("--epsilon_end", default=0.1, type=float,help="e-greedy策略中的结束epsilon")
|
||||
parser.add_argument("--epsilon_decay", default=200, type=float,help="e-greedy策略中epsilon的衰减率")
|
||||
parser.add_argument("--policy_lr", default=0.1, type=float,help="学习率")
|
||||
parser.add_argument("--max_episodes", default=500, type=int,help="训练的最大episode数目")
|
||||
|
||||
config = parser.parse_args()
|
||||
|
||||
return config
|
||||
from env import env_init_1
|
||||
from params import get_args
|
||||
from params import SEQUENCE, SAVED_MODEL_PATH, RESULT_PATH
|
||||
from utils import save_results,save_model
|
||||
from plot import plot
|
||||
|
||||
def train(cfg):
|
||||
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||||
# env = FrozenLakeWapper(env)
|
||||
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
||||
env = CliffWalkingWapper(env)
|
||||
'''# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||||
# env = FrozenLakeWapper(env)'''
|
||||
env = env_init_1()
|
||||
agent = QLearning(
|
||||
obs_dim=env.observation_space.n,
|
||||
action_dim=env.action_space.n,
|
||||
@@ -84,7 +72,7 @@ def train(cfg):
|
||||
break
|
||||
steps.append(ep_steps)
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动平均的reward
|
||||
'''计算滑动平均的reward'''
|
||||
if i_episode == 1:
|
||||
MA_rewards.append(ep_reward)
|
||||
else:
|
||||
@@ -92,20 +80,17 @@ def train(cfg):
|
||||
0.9*MA_rewards[-1]+0.1*ep_reward)
|
||||
print('Episode %s: steps = %s , reward = %.1f, explore = %.2f' % (i_episode, ep_steps,
|
||||
ep_reward,agent.epsilon))
|
||||
# 每隔20个episode渲染一下看看效果
|
||||
'''每隔20个episode渲染一下看看效果'''
|
||||
if i_episode % 20 == 0:
|
||||
render = True
|
||||
else:
|
||||
render = False
|
||||
agent.save() # 训练结束,保存模型
|
||||
|
||||
output_path = os.path.dirname(__file__)+"/result/"
|
||||
# 检测是否存在文件夹
|
||||
if not os.path.exists(output_path):
|
||||
os.mkdir(output_path)
|
||||
np.save(output_path+"rewards_train.npy", rewards)
|
||||
np.save(output_path+"MA_rewards_train.npy", MA_rewards)
|
||||
np.save(output_path+"steps_train.npy", steps)
|
||||
print('Complete training!')
|
||||
save_model(agent,model_path=SAVED_MODEL_PATH)
|
||||
'''存储reward等相关结果'''
|
||||
save_results(rewards,MA_rewards,tag='train',result_path=RESULT_PATH)
|
||||
plot(rewards)
|
||||
plot(MA_rewards,ylabel='moving_average_rewards_train')
|
||||
|
||||
def test(cfg):
|
||||
|
||||
@@ -144,12 +129,23 @@ def test(cfg):
|
||||
MA_rewards.append(
|
||||
0.9*MA_rewards[-1]+0.1*ep_reward)
|
||||
print('Episode %s: steps = %s , reward = %.1f' % (i_episode, ep_steps, ep_reward))
|
||||
plt.plot(MA_rewards)
|
||||
plt.show()
|
||||
print('Complete training!')
|
||||
save_model(agent,model_path=SAVED_MODEL_PATH)
|
||||
'''存储reward等相关结果'''
|
||||
save_results(rewards,MA_rewards,tag='train',result_path=RESULT_PATH)
|
||||
plot(rewards)
|
||||
plot(MA_rewards,ylabel='moving_average_rewards_train')
|
||||
|
||||
def main():
|
||||
cfg = get_args()
|
||||
# train(cfg)
|
||||
test(cfg)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
cfg = get_args()
|
||||
if cfg.train:
|
||||
train(cfg)
|
||||
eval(cfg)
|
||||
else:
|
||||
model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"
|
||||
eval(cfg,saved_model_path=model_path)
|
||||
36
codes/Q-learning/params.py
Normal file
36
codes/Q-learning/params.py
Normal file
@@ -0,0 +1,36 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-24 19:45:58
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-24 19:53:13
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import argparse
|
||||
import datetime
|
||||
import os
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
|
||||
|
||||
def get_args():
|
||||
'''训练的模型参数
|
||||
'''
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--train", default=1, type=int) # 1 表示训练,0表示只进行eval
|
||||
parser.add_argument("--gamma", default=0.9,
|
||||
type=float, help="reward 的衰减率")
|
||||
parser.add_argument("--epsilon_start", default=0.9,
|
||||
type=float,help="e-greedy策略中初始epsilon")
|
||||
parser.add_argument("--epsilon_end", default=0.1, type=float,help="e-greedy策略中的结束epsilon")
|
||||
parser.add_argument("--epsilon_decay", default=200, type=float,help="e-greedy策略中epsilon的衰减率")
|
||||
parser.add_argument("--policy_lr", default=0.1, type=float,help="学习率")
|
||||
parser.add_argument("--max_episodes", default=500, type=int,help="训练的最大episode数目")
|
||||
|
||||
config = parser.parse_args()
|
||||
|
||||
return config
|
||||
Binary file not shown.
BIN
codes/Q-learning/result/20201124-201903/rewards_train.npy
Normal file
BIN
codes/Q-learning/result/20201124-201903/rewards_train.npy
Normal file
Binary file not shown.
Binary file not shown.
BIN
codes/Q-learning/result/moving_average_rewards_train.png
Normal file
BIN
codes/Q-learning/result/moving_average_rewards_train.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 32 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 28 KiB After Width: | Height: | Size: 31 KiB |
BIN
codes/Q-learning/saved_model/20201124-201903/checkpoint.npy
Normal file
BIN
codes/Q-learning/saved_model/20201124-201903/checkpoint.npy
Normal file
Binary file not shown.
29
codes/Q-learning/utils.py
Normal file
29
codes/Q-learning/utils.py
Normal file
@@ -0,0 +1,29 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-24 19:50:18
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-24 20:20:46
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
|
||||
def save_results(rewards,moving_average_rewards,tag='train',result_path='./result'):
|
||||
'''保存reward等结果
|
||||
'''
|
||||
if not os.path.exists(result_path): # 检测是否存在文件夹
|
||||
os.mkdir(result_path)
|
||||
np.save(result_path+'rewards_'+tag+'.npy', rewards)
|
||||
np.save(result_path+'moving_average_rewards_'+tag+'.npy', moving_average_rewards)
|
||||
print('results saved!')
|
||||
|
||||
def save_model(agent,model_path='./saved_model'):
|
||||
if not os.path.exists(model_path): # 检测是否存在文件夹
|
||||
os.mkdir(model_path)
|
||||
agent.save_model(model_path+'checkpoint')
|
||||
print('model saved!')
|
||||
Reference in New Issue
Block a user