update DQN

This commit is contained in:
JohnJim0816
2020-10-15 22:07:12 +08:00
parent 838088be41
commit cf9887f6d0
38 changed files with 212 additions and 70 deletions

View File

@@ -5,20 +5,28 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:48:57
@LastEditor: John
LastEditTime: 2020-08-22 18:02:56
LastEditTime: 2020-10-15 22:00:28
@Discription:
@Environment: python 3.7.7
'''
import gym
import torch
from dqn import DQN
from plot import plot
from agent import DQN
import argparse
from torch.utils.tensorboard import SummaryWriter
import datetime
import os
from utils import save_results
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
def get_args():
'''模型参数
'''
parser = argparse.ArgumentParser()
parser.add_argument("--train", default=1, type=int) # 1 表示训练0表示只进行eval
parser.add_argument("--gamma", default=0.99,
type=float) # q-learning中的gamma
parser.add_argument("--epsilon_start", default=0.95,
@@ -31,20 +39,19 @@ def get_args():
parser.add_argument("--batch_size", default=32, type=int,
help="batch size of memory sampling")
parser.add_argument("--max_episodes", default=200, type=int) # 训练的最大episode数目
parser.add_argument("--max_steps", default=200, type=int)
# 将目标网络的更新频率改为1就是普通的dqn大于1就是double dqn
parser.add_argument("--target_update", default=1, type=int,
help="when(every default 10 eisodes) to update target net ")
parser.add_argument("--train_eps", default=200, type=int) # 训练的最大episode数目
parser.add_argument("--train_steps", default=200, type=int)
parser.add_argument("--target_update", default=2, type=int,
help="when(every default 2 eisodes) to update target net ") # 更新频率
parser.add_argument("--eval_eps", default=100, type=int) # 训练的最大episode数目
parser.add_argument("--eval_steps", default=200,
type=int) # 训练每个episode的长度
config = parser.parse_args()
return config
if __name__ == "__main__":
cfg = get_args()
# if gpu is to be used
def train(cfg):
print('Start to train ! \n')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym此处一般不需要
env.seed(1) # 设置env随机种子
@@ -55,11 +62,13 @@ if __name__ == "__main__":
rewards = []
moving_average_rewards = []
ep_steps = []
for i_episode in range(1, cfg.max_episodes+1):
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/train/" + SEQUENCE
writer = SummaryWriter(log_dir)
for i_episode in range(1, cfg.train_eps+1):
state = env.reset() # reset环境状态
ep_reward = 0
for i_step in range(1, cfg.max_steps+1):
action = agent.select_action(state) # 根据当前环境state选择action
for i_step in range(1, cfg.train_steps+1):
action = agent.choose_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action) # 更新环境参数
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory
@@ -80,17 +89,68 @@ if __name__ == "__main__":
else:
moving_average_rewards.append(
0.9*moving_average_rewards[-1]+0.1*ep_reward)
# 存储reward等相关结果
import os
import numpy as np
output_path = os.path.dirname(__file__)+"/result/"
# 检测是否存在文件夹
if not os.path.exists(output_path):
os.mkdir(output_path)
np.save(output_path+"rewards.npy", rewards)
np.save(output_path+"moving_average_rewards.npy", moving_average_rewards)
np.save(output_path+"steps.npy", ep_steps)
print('Complete')
plot(rewards)
plot(moving_average_rewards, ylabel="moving_average_rewards")
plot(ep_steps, ylabel="steps_of_each_episode")
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
writer.add_scalar('steps_of_each_episode',
ep_steps[-1], i_episode)
writer.close()
print('Complete training')
''' 保存模型 '''
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
os.mkdir(SAVED_MODEL_PATH)
agent.save_model(SAVED_MODEL_PATH+'checkpoint.pth')
print('model saved')
'''存储reward等相关结果'''
save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path=RESULT_PATH)
def eval(cfg, saved_model_path = SAVED_MODEL_PATH):
print('start to eval ! \n')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym此处一般不需要
env.seed(1) # 设置env随机种子
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,
epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size)
agent.load_model(saved_model_path+'checkpoint.pth')
rewards = []
moving_average_rewards = []
ep_steps = []
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/eval/" + SEQUENCE
writer = SummaryWriter(log_dir)
for i_episode in range(1, cfg.eval_eps+1):
state = env.reset() # reset环境状态
ep_reward = 0
for i_step in range(1, cfg.eval_steps+1):
action = agent.choose_action(state,train=False) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action) # 更新环境参数
ep_reward += reward
state = next_state # 跳转到下一个状态
if done:
break
print('Episode:', i_episode, ' Reward: %i' %
int(ep_reward), 'n_steps:', i_step, 'done: ', done)
ep_steps.append(i_step)
rewards.append(ep_reward)
# 计算滑动窗口的reward
if i_episode == 1:
moving_average_rewards.append(ep_reward)
else:
moving_average_rewards.append(
0.9*moving_average_rewards[-1]+0.1*ep_reward)
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
writer.add_scalar('steps_of_each_episode',
ep_steps[-1], i_episode)
writer.close()
'''存储reward等相关结果'''
save_results(rewards,moving_average_rewards,ep_steps,tag='eval',result_path=RESULT_PATH)
print('Complete evaling')
if __name__ == "__main__":
cfg = get_args()
if cfg.train:
train(cfg)
eval(cfg)
else:
model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"
eval(cfg,saved_model_path=model_path)