157 lines
7.1 KiB
Python
157 lines
7.1 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
@Author: John
|
||
@Email: johnjim0816@gmail.com
|
||
@Date: 2020-06-12 00:48:57
|
||
@LastEditor: John
|
||
LastEditTime: 2020-10-15 22:00:28
|
||
@Discription:
|
||
@Environment: python 3.7.7
|
||
'''
|
||
import gym
|
||
import torch
|
||
from agent import DQN
|
||
import argparse
|
||
from torch.utils.tensorboard import SummaryWriter
|
||
import datetime
|
||
import os
|
||
from utils import save_results
|
||
|
||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
|
||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
|
||
|
||
def get_args():
|
||
'''模型参数
|
||
'''
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument("--train", default=1, type=int) # 1 表示训练,0表示只进行eval
|
||
parser.add_argument("--gamma", default=0.99,
|
||
type=float) # q-learning中的gamma
|
||
parser.add_argument("--epsilon_start", default=0.95,
|
||
type=float) # 基于贪心选择action对应的参数epsilon
|
||
parser.add_argument("--epsilon_end", default=0.01, type=float)
|
||
parser.add_argument("--epsilon_decay", default=500, type=float)
|
||
parser.add_argument("--policy_lr", default=0.01, type=float)
|
||
parser.add_argument("--memory_capacity", default=1000,
|
||
type=int, help="capacity of Replay Memory")
|
||
|
||
parser.add_argument("--batch_size", default=32, type=int,
|
||
help="batch size of memory sampling")
|
||
parser.add_argument("--train_eps", default=200, type=int) # 训练的最大episode数目
|
||
parser.add_argument("--train_steps", default=200, type=int)
|
||
parser.add_argument("--target_update", default=2, type=int,
|
||
help="when(every default 2 eisodes) to update target net ") # 更新频率
|
||
|
||
parser.add_argument("--eval_eps", default=100, type=int) # 训练的最大episode数目
|
||
parser.add_argument("--eval_steps", default=200,
|
||
type=int) # 训练每个episode的长度
|
||
config = parser.parse_args()
|
||
|
||
return config
|
||
def train(cfg):
|
||
print('Start to train ! \n')
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要
|
||
env.seed(1) # 设置env随机种子
|
||
n_states = env.observation_space.shape[0]
|
||
n_actions = env.action_space.n
|
||
agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,
|
||
epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size)
|
||
rewards = []
|
||
moving_average_rewards = []
|
||
ep_steps = []
|
||
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/train/" + SEQUENCE
|
||
writer = SummaryWriter(log_dir)
|
||
for i_episode in range(1, cfg.train_eps+1):
|
||
state = env.reset() # reset环境状态
|
||
ep_reward = 0
|
||
for i_step in range(1, cfg.train_steps+1):
|
||
action = agent.choose_action(state) # 根据当前环境state选择action
|
||
next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||
ep_reward += reward
|
||
agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory
|
||
state = next_state # 跳转到下一个状态
|
||
agent.update() # 每步更新网络
|
||
if done:
|
||
break
|
||
# 更新target network,复制DQN中的所有weights and biases
|
||
if i_episode % cfg.target_update == 0:
|
||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||
print('Episode:', i_episode, ' Reward: %i' %
|
||
int(ep_reward), 'n_steps:', i_step, 'done: ', done,' Explore: %.2f' % agent.epsilon)
|
||
ep_steps.append(i_step)
|
||
rewards.append(ep_reward)
|
||
# 计算滑动窗口的reward
|
||
if i_episode == 1:
|
||
moving_average_rewards.append(ep_reward)
|
||
else:
|
||
moving_average_rewards.append(
|
||
0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
|
||
writer.add_scalar('steps_of_each_episode',
|
||
ep_steps[-1], i_episode)
|
||
writer.close()
|
||
print('Complete training!')
|
||
''' 保存模型 '''
|
||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||
os.mkdir(SAVED_MODEL_PATH)
|
||
agent.save_model(SAVED_MODEL_PATH+'checkpoint.pth')
|
||
print('model saved!')
|
||
'''存储reward等相关结果'''
|
||
save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path=RESULT_PATH)
|
||
|
||
|
||
def eval(cfg, saved_model_path = SAVED_MODEL_PATH):
|
||
print('start to eval ! \n')
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要
|
||
env.seed(1) # 设置env随机种子
|
||
n_states = env.observation_space.shape[0]
|
||
n_actions = env.action_space.n
|
||
agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,
|
||
epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size)
|
||
agent.load_model(saved_model_path+'checkpoint.pth')
|
||
rewards = []
|
||
moving_average_rewards = []
|
||
ep_steps = []
|
||
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/eval/" + SEQUENCE
|
||
writer = SummaryWriter(log_dir)
|
||
for i_episode in range(1, cfg.eval_eps+1):
|
||
state = env.reset() # reset环境状态
|
||
ep_reward = 0
|
||
for i_step in range(1, cfg.eval_steps+1):
|
||
action = agent.choose_action(state,train=False) # 根据当前环境state选择action
|
||
next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||
ep_reward += reward
|
||
state = next_state # 跳转到下一个状态
|
||
if done:
|
||
break
|
||
print('Episode:', i_episode, ' Reward: %i' %
|
||
int(ep_reward), 'n_steps:', i_step, 'done: ', done)
|
||
ep_steps.append(i_step)
|
||
rewards.append(ep_reward)
|
||
# 计算滑动窗口的reward
|
||
if i_episode == 1:
|
||
moving_average_rewards.append(ep_reward)
|
||
else:
|
||
moving_average_rewards.append(
|
||
0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
|
||
writer.add_scalar('steps_of_each_episode',
|
||
ep_steps[-1], i_episode)
|
||
writer.close()
|
||
'''存储reward等相关结果'''
|
||
save_results(rewards,moving_average_rewards,ep_steps,tag='eval',result_path=RESULT_PATH)
|
||
print('Complete evaling!')
|
||
|
||
if __name__ == "__main__":
|
||
cfg = get_args()
|
||
if cfg.train:
|
||
train(cfg)
|
||
eval(cfg)
|
||
else:
|
||
model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"
|
||
eval(cfg,saved_model_path=model_path)
|