This commit is contained in:
JohnJim0816
2021-03-23 16:10:11 +08:00
parent d4690c2058
commit bf0f2990cf
198 changed files with 1668 additions and 1545 deletions

View File

@@ -1,38 +1,15 @@
# Policy Gradient
实现的是Policy Gradient最基本的REINFORCE方法
## 使用说明
直接运行```main.py```即可
## 原理讲解
参考我的博客[Policy Gradient算法实战](https://blog.csdn.net/JohnJim0/article/details/110236851)
## 环境
python 3.7.9
pytorch 1.6.0
tensorboard 2.3.0
torchvision 0.7.0
python 3.7.9、pytorch 1.6.0
## 程序运行方法
train:
```python
python main.py
```
eval:
```python
python main.py --train 0
```
tensorboard
```python
tensorboard --logdir logs
```
## 参考
[REINFORCE和Reparameterization Trick](https://blog.csdn.net/JohnJim0/article/details/110230703)

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:27:44
LastEditor: John
LastEditTime: 2020-11-23 17:04:37
LastEditTime: 2021-03-13 11:50:16
Discription:
Environment:
'''
@@ -14,24 +14,23 @@ from torch.distributions import Bernoulli
from torch.autograd import Variable
import numpy as np
from model import FCN
from common.model import MLP1
class PolicyGradient:
def __init__(self, state_dim,device='cpu',gamma = 0.99,lr = 0.01,batch_size=5):
self.gamma = gamma
self.policy_net = FCN(state_dim)
self.optimizer = torch.optim.RMSprop(self.policy_net.parameters(), lr=lr)
self.batch_size = batch_size
def __init__(self, n_states,cfg):
self.gamma = cfg.gamma
self.policy_net = MLP1(n_states,hidden_dim=cfg.hidden_dim)
self.optimizer = torch.optim.RMSprop(self.policy_net.parameters(), lr=cfg.lr)
self.batch_size = cfg.batch_size
def choose_action(self,state):
state = torch.from_numpy(state).float()
state = Variable(state)
probs = self.policy_net(state)
m = Bernoulli(probs)
m = Bernoulli(probs) # 伯努利分布
action = m.sample()
action = action.data.numpy().astype(int)[0] # 转为标量
return action
@@ -67,6 +66,6 @@ class PolicyGradient:
loss.backward()
self.optimizer.step()
def save_model(self,path):
torch.save(self.policy_net.state_dict(), path)
torch.save(self.policy_net.state_dict(), path+'pg_checkpoint.pth')
def load_model(self,path):
self.policy_net.load_state_dict(torch.load(path))
self.policy_net.load_state_dict(torch.load(path+'pg_checkpoint.pth'))

View File

@@ -1,19 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:23:10
LastEditor: John
LastEditTime: 2020-11-23 11:55:24
Discription:
Environment:
'''
import gym
def env_init():
env = gym.make('CartPole-v0') # 可google为什么unwrapped gym此处一般不需要
env.seed(1) # 设置env随机种子
state_dim = env.observation_space.shape[0]
n_actions = env.action_space.n
return env,state_dim,n_actions

View File

@@ -5,34 +5,47 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:21:53
LastEditor: John
LastEditTime: 2020-11-24 19:52:40
LastEditTime: 2021-03-13 11:50:32
Discription:
Environment:
'''
import sys,os
sys.path.append(os.getcwd()) # 添加当前终端路径
from itertools import count
import torch
import os
from torch.utils.tensorboard import SummaryWriter
import datetime
import gym
from PolicyGradient.agent import PolicyGradient
from common.plot import plot_rewards
from common.utils import save_results
from env import env_init
from params import get_args
from agent import PolicyGradient
from params import SEQUENCE, SAVED_MODEL_PATH, RESULT_PATH
from utils import save_results,save_model
from plot import plot
def train(cfg):
env,state_dim,n_actions = env_init()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
agent = PolicyGradient(state_dim,device = device,lr = cfg.policy_lr)
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
os.mkdir(SAVED_MODEL_PATH)
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
os.mkdir(RESULT_PATH)
class PGConfig:
def __init__(self):
self.train_eps = 300 # 训练的episode数目
self.batch_size = 8
self.lr = 0.01 # 学习率
self.gamma = 0.99
self.hidden_dim = 36 # 隐藏层维度
def train(cfg,env,agent):
'''下面带pool都是存放的transition序列用于gradient'''
state_pool = [] # 存放每batch_size个episode的state序列
action_pool = []
reward_pool = []
''' 存储每个episode的reward用于绘图'''
rewards = []
moving_average_rewards = []
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/train/" + SEQUENCE
writer = SummaryWriter(log_dir) # 使用tensorboard的writer
ma_rewards = []
for i_episode in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
@@ -55,55 +68,22 @@ def train(cfg):
action_pool = []
reward_pool = []
rewards.append(ep_reward)
if i_episode == 0:
moving_average_rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
moving_average_rewards.append(
0.9*moving_average_rewards[-1]+0.1*ep_reward)
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode+1)
writer.close()
print('Complete training')
save_model(agent,model_path=SAVED_MODEL_PATH)
'''存储reward等相关结果'''
save_results(rewards,moving_average_rewards,tag='train',result_path=RESULT_PATH)
plot(rewards)
plot(moving_average_rewards,ylabel='moving_average_rewards_train')
def eval(cfg,saved_model_path = SAVED_MODEL_PATH):
env,state_dim,n_actions = env_init()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
agent = PolicyGradient(state_dim,device = device,lr = cfg.policy_lr)
agent.load_model(saved_model_path+'checkpoint.pth')
rewards = []
moving_average_rewards = []
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/eval/" + SEQUENCE
writer = SummaryWriter(log_dir) # 使用tensorboard的writer
for i_episode in range(cfg.eval_eps):
state = env.reset()
ep_reward = 0
for _ in count():
action = agent.choose_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action)
ep_reward += reward
state = next_state
if done:
print('Episode:', i_episode, ' Reward:', ep_reward)
break
rewards.append(ep_reward)
if i_episode == 0:
moving_average_rewards.append(ep_reward)
else:
moving_average_rewards.append(
0.9*moving_average_rewards[-1]+0.1*ep_reward)
writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode+1)
writer.close()
print('Complete evaling')
ma_rewards.append(ep_reward)
print('complete training')
return rewards, ma_rewards
if __name__ == "__main__":
cfg = get_args()
if cfg.train:
train(cfg)
eval(cfg)
else:
model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"
eval(cfg,saved_model_path=model_path)
cfg = PGConfig()
env = gym.make('CartPole-v0') # 可google为什么unwrapped gym此处一般不需要
env.seed(1) # 设置env随机种子
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
agent = PolicyGradient(n_states,cfg)
rewards, ma_rewards = train(cfg,env,agent)
agent.save_model(SAVED_MODEL_PATH)
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
plot_rewards(rewards,ma_rewards,tag="train",algo = "Policy Gradient",path=RESULT_PATH)

View File

@@ -1,27 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:18:46
LastEditor: John
LastEditTime: 2020-11-27 16:55:25
Discription:
Environment:
'''
import torch.nn as nn
import torch.nn.functional as F
class FCN(nn.Module):
''' 全连接网络'''
def __init__(self,state_dim):
super(FCN, self).__init__()
# 24和36为hidden layer的层数可根据state_dim, n_actions的情况来改变
self.fc1 = nn.Linear(state_dim, 36)
self.fc2 = nn.Linear(36, 36)
self.fc3 = nn.Linear(36, 1) # Prob of Left
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.sigmoid(self.fc3(x))
return x

View File

@@ -1,29 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:25:37
LastEditor: John
LastEditTime: 2020-11-26 19:11:21
Discription: 存储参数
Environment:
'''
import argparse
import datetime
import os
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
def get_args():
'''训练参数'''
parser = argparse.ArgumentParser()
parser.add_argument("--train", default=1, type=int) # 1 表示训练0表示只进行eval
parser.add_argument("--train_eps", default=300, type=int) # 训练的最大episode数目
parser.add_argument("--eval_eps", default=100, type=int) # 训练的最大episode数目
parser.add_argument("--batch_size", default=4, type=int) # 用于gradient的episode数目
parser.add_argument("--policy_lr", default=0.01, type=float) # 学习率
config = parser.parse_args()
return config

View File

@@ -1,46 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-23 13:48:46
LastEditor: John
LastEditTime: 2020-11-23 13:48:48
Discription:
Environment:
'''
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import os
def plot(item,ylabel='rewards_train', save_fig = True):
'''plot using searborn to plot
'''
sns.set()
plt.figure()
plt.plot(np.arange(len(item)), item)
plt.title(ylabel+' of DQN')
plt.ylabel(ylabel)
plt.xlabel('episodes')
if save_fig:
plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png")
plt.show()
if __name__ == "__main__":
output_path = os.path.split(os.path.abspath(__file__))[0]+"/result/"
tag = 'train'
rewards=np.load(output_path+"rewards_"+tag+".npy", )
moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",)
steps=np.load(output_path+"steps_"+tag+".npy")
plot(rewards)
plot(moving_average_rewards,ylabel='moving_average_rewards_'+tag)
plot(steps,ylabel='steps_'+tag)
tag = 'eval'
rewards=np.load(output_path+"rewards_"+tag+".npy", )
moving_average_rewards=np.load(output_path+"moving_average_rewards_"+tag+".npy",)
steps=np.load(output_path+"steps_"+tag+".npy")
plot(rewards,ylabel='rewards_'+tag)
plot(moving_average_rewards,ylabel='moving_average_rewards_'+tag)
plot(steps,ylabel='steps_'+tag)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

View File

@@ -1,29 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-23 13:44:52
LastEditor: John
LastEditTime: 2020-11-23 13:45:42
Discription:
Environment:
'''
import os
import numpy as np
def save_results(rewards,moving_average_rewards,tag='train',result_path='./result'):
'''保存reward等结果
'''
if not os.path.exists(result_path): # 检测是否存在文件夹
os.mkdir(result_path)
np.save(result_path+'rewards_'+tag+'.npy', rewards)
np.save(result_path+'moving_average_rewards_'+tag+'.npy', moving_average_rewards)
print('results saved!')
def save_model(agent,model_path='./saved_model'):
if not os.path.exists(model_path): # 检测是否存在文件夹
os.mkdir(model_path)
agent.save_model(model_path+'checkpoint.pth')
print('model saved')