update codes
This commit is contained in:
@@ -21,15 +21,15 @@ import math
|
||||
import numpy as np
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, n_states,n_actions,hidden_dim=128):
|
||||
def __init__(self, state_dim,action_dim,hidden_dim=128):
|
||||
""" 初始化q网络,为全连接网络
|
||||
n_states: 输入的特征数即环境的状态数
|
||||
n_actions: 输出的动作维度
|
||||
state_dim: 输入的特征数即环境的状态维度
|
||||
action_dim: 输出的动作维度
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
|
||||
self.fc1 = nn.Linear(state_dim, hidden_dim) # 输入层
|
||||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||||
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
|
||||
self.fc3 = nn.Linear(hidden_dim, action_dim) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
@@ -62,9 +62,9 @@ class ReplayBuffer:
|
||||
return len(self.buffer)
|
||||
|
||||
class DQN:
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
def __init__(self, state_dim, action_dim, cfg):
|
||||
|
||||
self.n_actions = n_actions # 总的动作个数
|
||||
self.action_dim = action_dim # 总的动作个数
|
||||
self.device = cfg.device # 设备,cpu或gpu等
|
||||
self.gamma = cfg.gamma # 奖励的折扣因子
|
||||
# e-greedy策略相关参数
|
||||
@@ -73,8 +73,8 @@ class DQN:
|
||||
(cfg.epsilon_start - cfg.epsilon_end) * \
|
||||
math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
|
||||
@@ -90,7 +90,7 @@ class DQN:
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # 选择Q值最大的动作
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
action = random.randrange(self.action_dim)
|
||||
return action
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略
|
||||
|
||||
Reference in New Issue
Block a user