update codes
This commit is contained in:
@@ -50,15 +50,15 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class FCN(nn.Module):
|
||||
def __init__(self, n_states=4, n_actions=18):
|
||||
def __init__(self, state_dim=4, action_dim=18):
|
||||
""" 初始化q网络,为全连接网络
|
||||
n_states: 输入的feature即环境的state数目
|
||||
n_actions: 输出的action总个数
|
||||
state_dim: 输入的feature即环境的state数目
|
||||
action_dim: 输出的action总个数
|
||||
"""
|
||||
super(FCN, self).__init__()
|
||||
self.fc1 = nn.Linear(n_states, 128) # 输入层
|
||||
self.fc1 = nn.Linear(state_dim, 128) # 输入层
|
||||
self.fc2 = nn.Linear(128, 128) # 隐藏层
|
||||
self.fc3 = nn.Linear(128, n_actions) # 输出层
|
||||
self.fc3 = nn.Linear(128, action_dim) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
@@ -66,7 +66,7 @@ class FCN(nn.Module):
|
||||
x = F.relu(self.fc2(x))
|
||||
return self.fc3(x)
|
||||
```
|
||||
输入为n_states,输出为n_actions,包含一个128维度的隐藏层,这里根据需要可增加隐藏层维度和数量,然后一般使用relu激活函数,这里跟深度学习的网路设置是一样的。
|
||||
输入为state_dim,输出为action_dim,包含一个128维度的隐藏层,这里根据需要可增加隐藏层维度和数量,然后一般使用relu激活函数,这里跟深度学习的网路设置是一样的。
|
||||
|
||||
### Replay Buffer
|
||||
|
||||
@@ -107,8 +107,8 @@ class ReplayBuffer:
|
||||
在类中建立两个网络,以及optimizer和memory,
|
||||
|
||||
```python
|
||||
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # copy params from policy net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
|
||||
@@ -124,7 +124,7 @@ def choose_action(self, state):
|
||||
if random.random() > self.epsilon(self.frame_idx):
|
||||
action = self.predict(state)
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
action = random.randrange(self.action_dim)
|
||||
return action
|
||||
```
|
||||
|
||||
|
||||
@@ -21,15 +21,15 @@ import math
|
||||
import numpy as np
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, n_states,n_actions,hidden_dim=128):
|
||||
def __init__(self, state_dim,action_dim,hidden_dim=128):
|
||||
""" 初始化q网络,为全连接网络
|
||||
n_states: 输入的特征数即环境的状态数
|
||||
n_actions: 输出的动作维度
|
||||
state_dim: 输入的特征数即环境的状态维度
|
||||
action_dim: 输出的动作维度
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
|
||||
self.fc1 = nn.Linear(state_dim, hidden_dim) # 输入层
|
||||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||||
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
|
||||
self.fc3 = nn.Linear(hidden_dim, action_dim) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
@@ -62,9 +62,9 @@ class ReplayBuffer:
|
||||
return len(self.buffer)
|
||||
|
||||
class DQN:
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
def __init__(self, state_dim, action_dim, cfg):
|
||||
|
||||
self.n_actions = n_actions # 总的动作个数
|
||||
self.action_dim = action_dim # 总的动作个数
|
||||
self.device = cfg.device # 设备,cpu或gpu等
|
||||
self.gamma = cfg.gamma # 奖励的折扣因子
|
||||
# e-greedy策略相关参数
|
||||
@@ -73,8 +73,8 @@ class DQN:
|
||||
(cfg.epsilon_start - cfg.epsilon_end) * \
|
||||
math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
|
||||
@@ -90,7 +90,7 @@ class DQN:
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # 选择Q值最大的动作
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
action = random.randrange(self.action_dim)
|
||||
return action
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略
|
||||
|
||||
@@ -70,9 +70,9 @@ class ReplayBuffer:
|
||||
return len(self.buffer)
|
||||
|
||||
class DQN:
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
def __init__(self, state_dim, action_dim, cfg):
|
||||
|
||||
self.n_actions = n_actions # 总的动作个数
|
||||
self.action_dim = action_dim # 总的动作个数
|
||||
self.device = cfg.device # 设备,cpu或gpu等
|
||||
self.gamma = cfg.gamma # 奖励的折扣因子
|
||||
# e-greedy策略相关参数
|
||||
@@ -81,8 +81,8 @@ class DQN:
|
||||
(cfg.epsilon_start - cfg.epsilon_end) * \
|
||||
math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = CNN(n_states, n_actions).to(self.device)
|
||||
self.target_net = CNN(n_states, n_actions).to(self.device)
|
||||
self.policy_net = CNN(state_dim, action_dim).to(self.device)
|
||||
self.target_net = CNN(state_dim, action_dim).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
|
||||
@@ -98,7 +98,7 @@ class DQN:
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # 选择Q值最大的动作
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
action = random.randrange(self.action_dim)
|
||||
return action
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略
|
||||
|
||||
@@ -7,23 +7,29 @@ sys.path.append(parent_path) # 添加路径到系统路径
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
import numpy as np
|
||||
from common.utils import save_results, make_dir
|
||||
from common.utils import plot_rewards
|
||||
from DQN.dqn import DQN
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
algo_name = 'DQN' # 算法名称
|
||||
env_name = 'CartPole-v0' # 环境名称
|
||||
|
||||
class DQNConfig:
|
||||
|
||||
class Config:
|
||||
'''超参数
|
||||
'''
|
||||
|
||||
def __init__(self):
|
||||
self.algo_name = algo_name # 算法名称
|
||||
self.env_name = env_name # 环境名称
|
||||
################################## 环境超参数 ###################################
|
||||
self.algo_name = 'DQN' # 算法名称
|
||||
self.env_name = 'CartPole-v0' # 环境名称
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPUgjgjlkhfsf风刀霜的撒发十
|
||||
self.train_eps = 200 # 训练的回合数
|
||||
self.test_eps = 30 # 测试的回合数
|
||||
# 超参数
|
||||
################################################################################
|
||||
|
||||
################################## 算法超参数 ###################################
|
||||
self.gamma = 0.95 # 强化学习中的折扣因子
|
||||
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
@@ -33,99 +39,106 @@ class DQNConfig:
|
||||
self.batch_size = 64 # mini-batch SGD中的批量大小
|
||||
self.target_update = 4 # 目标网络的更新频率
|
||||
self.hidden_dim = 256 # 网络隐藏层
|
||||
class PlotConfig:
|
||||
def __init__(self) -> None:
|
||||
self.algo = algo_name # 算法名称
|
||||
self.env_name = env_name # 环境名称
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
################################################################################
|
||||
|
||||
################################# 保存结果相关参数 ################################
|
||||
self.result_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/results/' # 保存结果的路径
|
||||
self.model_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/models/' # 保存模型的路径
|
||||
self.save = True # 是否保存图片
|
||||
self.save = True # 是否保存图片
|
||||
################################################################################
|
||||
|
||||
|
||||
def env_agent_config(cfg, seed=1):
|
||||
''' 创建环境和智能体
|
||||
'''
|
||||
env = gym.make(cfg.env_name) # 创建环境
|
||||
env.seed(seed) # 设置随机种子
|
||||
n_states = env.observation_space.shape[0] # 状态数
|
||||
n_actions = env.action_space.n # 动作数
|
||||
agent = DQN(n_states, n_actions, cfg) # 创建智能体
|
||||
state_dim = env.observation_space.shape[0] # 状态维度
|
||||
action_dim = env.action_space.n # 动作维度
|
||||
agent = DQN(state_dim, action_dim, cfg) # 创建智能体
|
||||
if seed !=0: # 设置随机种子
|
||||
torch.manual_seed(seed)
|
||||
env.seed(seed)
|
||||
np.random.seed(seed)
|
||||
return env, agent
|
||||
|
||||
|
||||
def train(cfg, env, agent):
|
||||
''' 训练
|
||||
'''
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
while True:
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
agent.memory.push(state, action, reward, next_state, done) # 保存transition
|
||||
state = next_state # 更新下一个状态
|
||||
agent.update() # 更新智能体
|
||||
ep_reward += reward # 累加奖励
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
agent.memory.push(state, action, reward,
|
||||
next_state, done) # 保存transition
|
||||
state = next_state # 更新下一个状态
|
||||
agent.update() # 更新智能体
|
||||
ep_reward += reward # 累加奖励
|
||||
if done:
|
||||
break
|
||||
if (i_ep+1) % cfg.target_update == 0: # 智能体目标网络更新
|
||||
if (i_ep + 1) % cfg.target_update == 0: # 智能体目标网络更新
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
ma_rewards.append(0.9 * ma_rewards[-1] + 0.1 * ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
if (i_ep+1)%10 == 0:
|
||||
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
|
||||
if (i_ep + 1) % 10 == 0:
|
||||
print('回合:{}/{}, 奖励:{}'.format(i_ep + 1, cfg.train_eps, ep_reward))
|
||||
print('完成训练!')
|
||||
return rewards, ma_rewards
|
||||
|
||||
def test(cfg,env,agent):
|
||||
|
||||
def test(cfg, env, agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0
|
||||
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
|
||||
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
|
||||
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.test_eps):
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
while True:
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
state = next_state # 更新下一个状态
|
||||
ep_reward += reward # 累加奖励
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
state = next_state # 更新下一个状态
|
||||
ep_reward += reward # 累加奖励
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
ma_rewards.append(ma_rewards[-1] * 0.9 + ep_reward * 0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
|
||||
print('完成测试!')
|
||||
return rewards,ma_rewards
|
||||
return rewards, ma_rewards
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = DQNConfig()
|
||||
plot_cfg = PlotConfig()
|
||||
cfg = Config()
|
||||
# 训练
|
||||
env, agent = env_agent_config(cfg, seed=1)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||
agent.save(path=plot_cfg.model_path) # 保存模型
|
||||
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||
agent.save(path=cfg.model_path) # 保存模型
|
||||
save_results(rewards, ma_rewards, tag='train',
|
||||
path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
|
||||
path=cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果
|
||||
# 测试
|
||||
env, agent = env_agent_config(cfg, seed=10)
|
||||
agent.load(path=plot_cfg.model_path) # 导入模型
|
||||
agent.load(path=cfg.model_path) # 导入模型
|
||||
rewards, ma_rewards = test(cfg, env, agent)
|
||||
save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果
|
||||
save_results(rewards, ma_rewards, tag='test',
|
||||
path=cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, cfg, tag="test") # 画出结果
|
||||
|
||||
@@ -66,9 +66,9 @@ def env_agent_config(cfg, seed=1):
|
||||
'''
|
||||
env = gym.make(cfg.env_name) # 创建环境
|
||||
env.seed(seed) # 设置随机种子
|
||||
n_states = env.observation_space.shape[0] # 状态数
|
||||
n_actions = env.action_space.n # 动作数
|
||||
agent = DQN(n_states, n_actions, cfg) # 创建智能体
|
||||
state_dim = env.observation_space.shape[0] # 状态维度
|
||||
action_dim = env.action_space.n # 动作维度
|
||||
agent = DQN(state_dim, action_dim, cfg) # 创建智能体
|
||||
return env, agent
|
||||
|
||||
def train(cfg, env, agent):
|
||||
|
||||
@@ -68,9 +68,9 @@ def env_agent_config(cfg, seed=1):
|
||||
# env = wrap_deepmind(env)
|
||||
# env = wrap_pytorch(env)
|
||||
env.seed(seed) # 设置随机种子
|
||||
n_states = env.observation_space.shape[0] # 状态数
|
||||
n_actions = env.action_space.n # 动作数
|
||||
agent = DQN(n_states, n_actions, cfg) # 创建智能体
|
||||
state_dim = env.observation_space.shape[0] # 状态维度
|
||||
action_dim = env.action_space.n # 动作维度
|
||||
agent = DQN(state_dim, action_dim, cfg) # 创建智能体
|
||||
return env, agent
|
||||
|
||||
def train(cfg, env, agent):
|
||||
|
||||
Reference in New Issue
Block a user