This commit is contained in:
johnjim0816
2022-07-13 23:52:05 +08:00
parent 45cc4aff58
commit bab7f6fe8c
66 changed files with 247 additions and 841 deletions

View File

@@ -1,5 +1,7 @@
from lib2to3.pytree import type_repr
import sys
import os
from parso import parse
import torch.nn as nn
import torch.nn.functional as F
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
@@ -10,86 +12,58 @@ import gym
import torch
import datetime
import numpy as np
import argparse
from common.utils import save_results_1, make_dir
from common.utils import plot_rewards
from common.utils import plot_rewards,save_args
from dqn import DQN
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
def get_args():
""" Hyperparameters
"""
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm")
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor")
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon")
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
parser.add_argument('--batch_size',default=64,type=int)
parser.add_argument('--target_update',default=4,type=int)
parser.add_argument('--hidden_dim',default=256,type=int)
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/results/' )
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/models/' ) # path to save models
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
args = parser.parse_args()
args.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # check GPU
return args
class MLP(nn.Module):
def __init__(self, n_states,n_actions,hidden_dim=128):
""" 初始化q网络为全连接网络
n_states: 输入的特征数即环境的状态维度
n_actions: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
def forward(self, x):
# 各层对应的激活函数
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
class Config:
'''超参数
'''
def __init__(self):
############################### hyperparameters ################################
self.algo_name = 'DQN' # algorithm name
self.env_name = 'CartPole-v0' # environment name
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # check GPU
self.seed = 10 # 随机种子置0则不设置随机种子
self.train_eps = 200 # 训练的回合数
self.test_eps = 20 # 测试的回合数
################################################################################
################################## 算法超参数 ###################################
self.gamma = 0.95 # 强化学习中的折扣因子
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
self.lr = 0.0001 # 学习率
self.memory_capacity = 100000 # 经验回放的容量
self.batch_size = 64 # mini-batch SGD中的批量大小
self.target_update = 4 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层
################################################################################
################################# 保存结果相关参数 ################################
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
################################################################################
def env_agent_config(cfg):
def env_agent_config(cfg,seed=1):
''' 创建环境和智能体
'''
env = gym.make(cfg.env_name) # 创建环境
n_states = env.observation_space.shape[0] # 状态维度
n_actions = env.action_space.n # 动作维度
print(f"n states: {n_states}, n actions: {n_actions}")
model = MLP(n_states,n_actions)
agent = DQN(n_actions, model, cfg) # 创建智能体
if cfg.seed !=0: # 设置随机种子
torch.manual_seed(cfg.seed)
env.seed(cfg.seed)
np.random.seed(cfg.seed)
agent = DQN(n_states,n_actions, cfg) # 创建智能体
if seed !=0: # 设置随机种子
torch.manual_seed(seed)
env.seed(seed)
np.random.seed(seed)
return env, agent
def train(cfg, env, agent):
''' 训练
''' Training
'''
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
print('Start training!')
print(f'Env:{cfg.env_name}, A{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
steps = []
@@ -117,7 +91,7 @@ def train(cfg, env, agent):
else:
ma_rewards.append(ep_reward)
if (i_ep + 1) % 1 == 0:
print(f'Episode{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f} Epislon:{agent.epsilon(agent.frame_idx):.3f}')
print(f'Episode{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f} Epislon:{agent.epsilon(agent.frame_idx):.3f}')
print('Finish training!')
env.close()
res_dic = {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
@@ -152,18 +126,19 @@ def test(cfg, env, agent):
ma_rewards.append(ma_rewards[-1] * 0.9 + ep_reward * 0.1)
else:
ma_rewards.append(ep_reward)
print(f'Episode{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f}')
print(f'Episode{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f}')
print('完成测试!')
env.close()
return {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
if __name__ == "__main__":
cfg = Config()
cfg = get_args()
# 训练
env, agent = env_agent_config(cfg)
res_dic = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
save_args(cfg)
agent.save(path=cfg.model_path) # 保存模型
save_results_1(res_dic, tag='train',
path=cfg.result_path) # 保存结果