153 lines
6.8 KiB
Python
153 lines
6.8 KiB
Python
from lib2to3.pytree import type_repr
|
||
import sys
|
||
import os
|
||
from parso import parse
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||
parent_path = os.path.dirname(curr_path) # 父路径
|
||
sys.path.append(parent_path) # 添加路径到系统路径
|
||
|
||
import gym
|
||
import torch
|
||
import datetime
|
||
import numpy as np
|
||
import argparse
|
||
from common.utils import save_results_1, make_dir
|
||
from common.utils import plot_rewards,save_args
|
||
from dqn import DQN
|
||
|
||
def get_args():
|
||
""" Hyperparameters
|
||
"""
|
||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
|
||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||
parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm")
|
||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
|
||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||
parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor")
|
||
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
|
||
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
|
||
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon")
|
||
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
|
||
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
|
||
parser.add_argument('--batch_size',default=64,type=int)
|
||
parser.add_argument('--target_update',default=4,type=int)
|
||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||
'/' + curr_time + '/results/' )
|
||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||
'/' + curr_time + '/models/' ) # path to save models
|
||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||
args = parser.parse_args()
|
||
args.device = torch.device(
|
||
"cuda" if torch.cuda.is_available() else "cpu") # check GPU
|
||
return args
|
||
|
||
def env_agent_config(cfg,seed=1):
|
||
''' 创建环境和智能体
|
||
'''
|
||
env = gym.make(cfg.env_name) # 创建环境
|
||
n_states = env.observation_space.shape[0] # 状态维度
|
||
n_actions = env.action_space.n # 动作维度
|
||
print(f"n states: {n_states}, n actions: {n_actions}")
|
||
agent = DQN(n_states,n_actions, cfg) # 创建智能体
|
||
if seed !=0: # 设置随机种子
|
||
torch.manual_seed(seed)
|
||
env.seed(seed)
|
||
np.random.seed(seed)
|
||
return env, agent
|
||
|
||
def train(cfg, env, agent):
|
||
''' Training
|
||
'''
|
||
print('Start training!')
|
||
print(f'Env:{cfg.env_name}, A{cfg.algo_name}, 设备:{cfg.device}')
|
||
rewards = [] # 记录所有回合的奖励
|
||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||
steps = []
|
||
for i_ep in range(cfg.train_eps):
|
||
ep_reward = 0 # 记录一回合内的奖励
|
||
ep_step = 0
|
||
state = env.reset() # 重置环境,返回初始状态
|
||
while True:
|
||
ep_step += 1
|
||
action = agent.choose_action(state) # 选择动作
|
||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||
agent.memory.push(state, action, reward,
|
||
next_state, done) # 保存transition
|
||
state = next_state # 更新下一个状态
|
||
agent.update() # 更新智能体
|
||
ep_reward += reward # 累加奖励
|
||
if done:
|
||
break
|
||
if (i_ep + 1) % cfg.target_update == 0: # 智能体目标网络更新
|
||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||
steps.append(ep_step)
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(0.9 * ma_rewards[-1] + 0.1 * ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
if (i_ep + 1) % 1 == 0:
|
||
print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f} Epislon:{agent.epsilon(agent.frame_idx):.3f}')
|
||
print('Finish training!')
|
||
env.close()
|
||
res_dic = {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
|
||
return res_dic
|
||
|
||
|
||
def test(cfg, env, agent):
|
||
print('开始测试!')
|
||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||
############# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0 ###############
|
||
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
|
||
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
|
||
################################################################################
|
||
rewards = [] # 记录所有回合的奖励
|
||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||
steps = []
|
||
for i_ep in range(cfg.test_eps):
|
||
ep_reward = 0 # 记录一回合内的奖励
|
||
ep_step = 0
|
||
state = env.reset() # 重置环境,返回初始状态
|
||
while True:
|
||
ep_step+=1
|
||
action = agent.choose_action(state) # 选择动作
|
||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||
state = next_state # 更新下一个状态
|
||
ep_reward += reward # 累加奖励
|
||
if done:
|
||
break
|
||
steps.append(ep_step)
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(ma_rewards[-1] * 0.9 + ep_reward * 0.1)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print(f'Episode:{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f}')
|
||
print('完成测试!')
|
||
env.close()
|
||
return {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
|
||
|
||
|
||
if __name__ == "__main__":
|
||
cfg = get_args()
|
||
# 训练
|
||
env, agent = env_agent_config(cfg)
|
||
res_dic = train(cfg, env, agent)
|
||
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||
save_args(cfg)
|
||
agent.save(path=cfg.model_path) # 保存模型
|
||
save_results_1(res_dic, tag='train',
|
||
path=cfg.result_path) # 保存结果
|
||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train") # 画出结果
|
||
# 测试
|
||
env, agent = env_agent_config(cfg)
|
||
agent.load(path=cfg.model_path) # 导入模型
|
||
res_dic = test(cfg, env, agent)
|
||
save_results_1(res_dic, tag='test',
|
||
path=cfg.result_path) # 保存结果
|
||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'],cfg, tag="test") # 画出结果
|