This commit is contained in:
johnjim0816
2022-07-13 23:52:05 +08:00
parent 45cc4aff58
commit bab7f6fe8c
66 changed files with 247 additions and 841 deletions

View File

@@ -5,7 +5,7 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:50:49
@LastEditor: John
LastEditTime: 2022-03-02 11:05:11
LastEditTime: 2022-07-13 00:08:18
@Discription:
@Environment: python 3.7.7
'''
@@ -20,7 +20,22 @@ import random
import math
import numpy as np
class MLP(nn.Module):
def __init__(self, n_states,n_actions,hidden_dim=128):
""" 初始化q网络为全连接网络
n_states: 输入的特征数即环境的状态维度
n_actions: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
def forward(self, x):
# 各层对应的激活函数
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
class ReplayBuffer:
def __init__(self, capacity):
@@ -47,7 +62,7 @@ class ReplayBuffer:
return len(self.buffer)
class DQN:
def __init__(self, n_actions,model,cfg):
def __init__(self, n_states,n_actions,cfg):
self.n_actions = n_actions # 总的动作个数
self.device = cfg.device # 设备cpu或gpu等
@@ -58,8 +73,8 @@ class DQN:
(cfg.epsilon_start - cfg.epsilon_end) * \
math.exp(-1. * frame_idx / cfg.epsilon_decay)
self.batch_size = cfg.batch_size
self.policy_net = model.to(self.device)
self.target_net = model.to(self.device)
self.policy_net = MLP(n_states,n_actions).to(self.device)
self.target_net = MLP(n_states,n_actions).to(self.device)
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
target_param.data.copy_(param.data)
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 41 KiB

View File

@@ -0,0 +1,19 @@
------------------ start ------------------
algo_name : DQN
env_name : CartPole-v0
train_eps : 200
test_eps : 20
gamma : 0.95
epsilon_start : 0.95
epsilon_end : 0.01
epsilon_decay : 500
lr : 0.0001
memory_capacity : 100000
batch_size : 64
target_update : 4
hidden_dim : 256
result_path : C:\Users\24438\Desktop\rl-tutorials\codes\DQN/outputs/CartPole-v0/20220713-211653/results/
model_path : C:\Users\24438\Desktop\rl-tutorials\codes\DQN/outputs/CartPole-v0/20220713-211653/models/
save_fig : True
device : cuda
------------------- end -------------------

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

View File

@@ -1,5 +1,7 @@
from lib2to3.pytree import type_repr
import sys
import os
from parso import parse
import torch.nn as nn
import torch.nn.functional as F
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
@@ -10,86 +12,58 @@ import gym
import torch
import datetime
import numpy as np
import argparse
from common.utils import save_results_1, make_dir
from common.utils import plot_rewards
from common.utils import plot_rewards,save_args
from dqn import DQN
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
def get_args():
""" Hyperparameters
"""
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm")
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor")
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon")
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
parser.add_argument('--batch_size',default=64,type=int)
parser.add_argument('--target_update',default=4,type=int)
parser.add_argument('--hidden_dim',default=256,type=int)
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/results/' )
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/models/' ) # path to save models
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
args = parser.parse_args()
args.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # check GPU
return args
class MLP(nn.Module):
def __init__(self, n_states,n_actions,hidden_dim=128):
""" 初始化q网络为全连接网络
n_states: 输入的特征数即环境的状态维度
n_actions: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
def forward(self, x):
# 各层对应的激活函数
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
class Config:
'''超参数
'''
def __init__(self):
############################### hyperparameters ################################
self.algo_name = 'DQN' # algorithm name
self.env_name = 'CartPole-v0' # environment name
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # check GPU
self.seed = 10 # 随机种子置0则不设置随机种子
self.train_eps = 200 # 训练的回合数
self.test_eps = 20 # 测试的回合数
################################################################################
################################## 算法超参数 ###################################
self.gamma = 0.95 # 强化学习中的折扣因子
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
self.lr = 0.0001 # 学习率
self.memory_capacity = 100000 # 经验回放的容量
self.batch_size = 64 # mini-batch SGD中的批量大小
self.target_update = 4 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层
################################################################################
################################# 保存结果相关参数 ################################
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
################################################################################
def env_agent_config(cfg):
def env_agent_config(cfg,seed=1):
''' 创建环境和智能体
'''
env = gym.make(cfg.env_name) # 创建环境
n_states = env.observation_space.shape[0] # 状态维度
n_actions = env.action_space.n # 动作维度
print(f"n states: {n_states}, n actions: {n_actions}")
model = MLP(n_states,n_actions)
agent = DQN(n_actions, model, cfg) # 创建智能体
if cfg.seed !=0: # 设置随机种子
torch.manual_seed(cfg.seed)
env.seed(cfg.seed)
np.random.seed(cfg.seed)
agent = DQN(n_states,n_actions, cfg) # 创建智能体
if seed !=0: # 设置随机种子
torch.manual_seed(seed)
env.seed(seed)
np.random.seed(seed)
return env, agent
def train(cfg, env, agent):
''' 训练
''' Training
'''
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
print('Start training!')
print(f'Env:{cfg.env_name}, A{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
steps = []
@@ -117,7 +91,7 @@ def train(cfg, env, agent):
else:
ma_rewards.append(ep_reward)
if (i_ep + 1) % 1 == 0:
print(f'Episode{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f} Epislon:{agent.epsilon(agent.frame_idx):.3f}')
print(f'Episode{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f} Epislon:{agent.epsilon(agent.frame_idx):.3f}')
print('Finish training!')
env.close()
res_dic = {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
@@ -152,18 +126,19 @@ def test(cfg, env, agent):
ma_rewards.append(ma_rewards[-1] * 0.9 + ep_reward * 0.1)
else:
ma_rewards.append(ep_reward)
print(f'Episode{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f}')
print(f'Episode{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f}')
print('完成测试!')
env.close()
return {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
if __name__ == "__main__":
cfg = Config()
cfg = get_args()
# 训练
env, agent = env_agent_config(cfg)
res_dic = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
save_args(cfg)
agent.save(path=cfg.model_path) # 保存模型
save_results_1(res_dic, tag='train',
path=cfg.result_path) # 保存结果

View File

@@ -1,168 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-12-22 11:14:17
LastEditor: JiangJi
LastEditTime: 2022-06-18 20:12:20
Discription: 使用 Nature DQN 训练 CartPole-v1
'''
import sys
import os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import gym
import torch
import datetime
import torch.nn as nn
import torch.nn.functional as F
from common.utils import save_results, make_dir
from common.utils import plot_rewards, plot_rewards_cn
from dqn import DQN
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
algo_name = "DQN" # 算法名称
env_name = 'CartPole-v1' # 环境名称
class DQNConfig:
''' 算法相关参数设置
'''
def __init__(self):
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.train_eps = 300 # 训练的回合数
self.test_eps = 20 # 测试的回合数
# 超参数
self.gamma = 0.99 # 强化学习中的折扣因子
self.epsilon_start = 0.99 # e-greedy策略中初始epsilon
self.epsilon_end = 0.005 # e-greedy策略中的终止epsilon
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
self.lr = 0.0001 # 学习率
self.memory_capacity = 100000 # 经验回放的容量
self.batch_size = 128 # mini-batch SGD中的批量大小
self.target_update = 4 # 目标网络的更新频率
self.hidden_dim = 512 # 网络隐藏层
class PlotConfig:
''' 绘图相关参数设置
'''
def __init__(self) -> None:
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
class MLP(nn.Module):
def __init__(self, n_states,n_actions,hidden_dim=128):
""" 初始化q网络为全连接网络
n_states: 输入的特征数即环境的状态维度
n_actions: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
def forward(self, x):
# 各层对应的激活函数
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
def env_agent_config(cfg, seed=1):
''' 创建环境和智能体
'''
env = gym.make(cfg.env_name) # 创建环境
env.seed(seed) # 设置随机种子
n_states = env.observation_space.shape[0] # 状态维度
n_actions = env.action_space.n # 动作维度
model = MLP(n_states,n_actions)
agent = DQN(n_actions,model,cfg) # 创建智能体
return env, agent
def train(cfg, env, agent):
''' 训练
'''
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.train_eps):
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
while True:
action = agent.choose_action(state) # 选择动作
next_state, reward, done, _ = env.step(action) # 更新环境返回transition
agent.memory.push(state, action, reward, next_state, done) # 保存transition
state = next_state # 更新下一个状态
agent.update() # 更新智能体
ep_reward += reward # 累加奖励
if done:
break
if (i_ep+1) % cfg.target_update == 0: # 智能体目标网络更新
agent.target_net.load_state_dict(agent.policy_net.state_dict())
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
if (i_ep+1)%10 == 0:
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
print('完成训练!')
return rewards, ma_rewards
def test(cfg,env,agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
# 由于测试不需要使用epsilon-greedy策略所以相应的值设置为0
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.test_eps):
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
while True:
action = agent.choose_action(state) # 选择动作
next_state, reward, done, _ = env.step(action) # 更新环境返回transition
state = next_state # 更新下一个状态
ep_reward += reward # 累加奖励
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
print('完成测试!')
return rewards,ma_rewards
if __name__ == "__main__":
cfg = DQNConfig()
plot_cfg = PlotConfig()
# 训练
env, agent = env_agent_config(cfg, seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=plot_cfg.model_path) # 保存模型
save_results(rewards, ma_rewards, tag='train',
path=plot_cfg.result_path) # 保存结果
plot_rewards_cn(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
# 测试
env, agent = env_agent_config(cfg, seed=10)
agent.load(path=plot_cfg.model_path) # 导入模型
rewards, ma_rewards = test(cfg, env, agent)
save_results(rewards, ma_rewards, tag='test',
path=plot_cfg.result_path) # 保存结果
plot_rewards_cn(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果

View File

@@ -1,150 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-12-22 11:14:17
LastEditor: JiangJi
LastEditTime: 2022-02-10 06:17:46
Discription: 使用 DQN-cnn 训练 PongNoFrameskip-v4
'''
import sys
import os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import gym
import torch
import datetime
from common.utils import save_results, make_dir
from common.utils import plot_rewards, plot_rewards_cn
from common.atari_wrappers import make_atari, wrap_deepmind
from dqn import DQN
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
algo_name = 'DQN-cnn' # 算法名称
env_name = 'PongNoFrameskip-v4' # 环境名称
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
class DQNConfig:
''' 算法相关参数设置
'''
def __init__(self):
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = device # 检测GPU
self.train_eps = 500 # 训练的回合数
self.test_eps = 30 # 测试的回合数
# 超参数
self.gamma = 0.95 # 强化学习中的折扣因子
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
self.lr = 0.0001 # 学习率
self.memory_capacity = 100000 # 经验回放的容量
self.batch_size = 64 # mini-batch SGD中的批量大小
self.target_update = 4 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层
class PlotConfig:
''' 绘图相关参数设置
'''
def __init__(self) -> None:
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = device # 检测GPU
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
def env_agent_config(cfg, seed=1):
''' 创建环境和智能体
'''
env = make_atari(cfg.env_name) # 创建环境
# env = wrap_deepmind(env)
# env = wrap_pytorch(env)
env.seed(seed) # 设置随机种子
n_states = env.observation_space.shape[0] # 状态维度
n_actions = env.action_space.n # 动作维度
agent = DQN(n_states, n_actions, cfg) # 创建智能体
return env, agent
def train(cfg, env, agent):
''' 训练
'''
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.train_eps):
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
while True:
action = agent.choose_action(state) # 选择动作
next_state, reward, done, _ = env.step(action) # 更新环境返回transition
agent.memory.push(state, action, reward, next_state, done) # 保存transition
state = next_state # 更新下一个状态
agent.update() # 更新智能体
ep_reward += reward # 累加奖励
if done:
break
if (i_ep+1) % cfg.target_update == 0: # 智能体目标网络更新
agent.target_net.load_state_dict(agent.policy_net.state_dict())
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
if (i_ep+1)%10 == 0:
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
print('完成训练!')
return rewards, ma_rewards
def test(cfg,env,agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
# 由于测试不需要使用epsilon-greedy策略所以相应的值设置为0
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.test_eps):
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
while True:
action = agent.choose_action(state) # 选择动作
next_state, reward, done, _ = env.step(action) # 更新环境返回transition
state = next_state # 更新下一个状态
ep_reward += reward # 累加奖励
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
print('完成测试!')
return rewards,ma_rewards
if __name__ == "__main__":
cfg = DQNConfig()
plot_cfg = PlotConfig()
# 训练
env, agent = env_agent_config(cfg, seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=plot_cfg.model_path) # 保存模型
save_results(rewards, ma_rewards, tag='train',
path=plot_cfg.result_path) # 保存结果
plot_rewards_cn(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
# 测试
env, agent = env_agent_config(cfg, seed=10)
agent.load(path=plot_cfg.model_path) # 导入模型
rewards, ma_rewards = test(cfg, env, agent)
save_results(rewards, ma_rewards, tag='test',
path=plot_cfg.result_path) # 保存结果
plot_rewards_cn(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果

View File

@@ -1,180 +0,0 @@
import sys
import os
import torch.nn as nn
import torch.nn.functional as F
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import gym
import torch
import datetime
import numpy as np
from common.utils import save_results_1, make_dir
from common.utils import plot_rewards
from dqn_1 import DQN
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
class MLP(nn.Module):
def __init__(self, n_states,n_actions,hidden_dim=256):
""" 初始化q网络为全连接网络
n_states: 输入的特征数即环境的状态维度
n_actions: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc4 = nn.Linear(hidden_dim, n_actions) # 输出层
def forward(self, x):
# 各层对应的激活函数
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
return self.fc4(x)
class Config:
'''超参数
'''
def __init__(self):
################################## 环境超参数 ###################################
self.algo_name = 'DQN' # 算法名称
# self.env_name = 'Breakout-ram-v0' # 环境名称
self.env_name = 'ALE/Pong-ram-v5'
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPUgjgjlkhfsf风刀霜的撒发十
self.seed = 10 # 随机种子置0则不设置随机种子
self.train_eps = 5 # 训练的回合数
self.test_eps = 30 # 测试的回合数
################################################################################
################################## 算法超参数 ###################################
self.gamma = 0.99 # 强化学习中的折扣因子
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 500000 # e-greedy策略中epsilon的衰减率
self.lr = 0.00025 # 学习率
self.memory_capacity = int(5e4) # 经验回放的容量
self.batch_size = 32 # mini-batch SGD中的批量大小
self.target_update = 4 # 目标网络的更新频率
self.hidden_dim = 512 # 网络隐藏层
################################################################################
################################# 保存结果相关参数 ################################
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
################################################################################
def env_agent_config(cfg):
''' 创建环境和智能体
'''
env = gym.make(cfg.env_name) # 创建环境
n_states = env.observation_space.shape[0] # 状态维度
n_actions = env.action_space.n # 动作维度
print(f"n states: {n_states}, n actions: {n_actions}")
model = MLP(n_states,n_actions)
agent = DQN(n_states, n_actions, model, cfg) # 创建智能体
if cfg.seed !=0: # 设置随机种子
torch.manual_seed(cfg.seed)
env.seed(cfg.seed)
np.random.seed(cfg.seed)
return env, agent
def train(cfg, env, agent):
''' 训练
'''
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
steps = []
for i_ep in range(cfg.train_eps):
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
ep_step = 0
while True:
ep_step+=1
action = agent.choose_action(state) # 选择动作
next_state, reward, done, _ = env.step(action) # 更新环境返回transition
agent.memory.push(state, action, reward,
next_state, done) # 保存transition
state = next_state # 更新下一个状态
agent.update() # 更新智能体
ep_reward += reward # 累加奖励
if done:
break
if (i_ep + 1) % cfg.target_update == 0: # 智能体目标网络更新
agent.target_net.load_state_dict(agent.policy_net.state_dict())
steps.append(ep_step)
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9 * ma_rewards[-1] + 0.1 * ep_reward)
else:
ma_rewards.append(ep_reward)
if (i_ep + 1) % 1 == 0:
print(f'Episode{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}, Epislon:{agent.epsilon(agent.frame_idx):.3f}')
print('完成训练!')
env.close()
res_dic = {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
return res_dic
def test(cfg, env, agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
############# 由于测试不需要使用epsilon-greedy策略所以相应的值设置为0 ###############
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
################################################################################
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
steps = []
for i_ep in range(cfg.test_eps):
ep_reward = 0 # 记录一回合内的奖励
ep_step = 0
state = env.reset() # 重置环境,返回初始状态
while True:
ep_step+=1
action = agent.choose_action(state) # 选择动作
next_state, reward, done, _ = env.step(action) # 更新环境返回transition
state = next_state # 更新下一个状态
ep_reward += reward # 累加奖励
if done:
break
steps.append(ep_step)
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1] * 0.9 + ep_reward * 0.1)
else:
ma_rewards.append(ep_reward)
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
print('完成测试!')
env.close()
return {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
if __name__ == "__main__":
cfg = Config()
# 训练
env, agent = env_agent_config(cfg)
res_dic = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=cfg.model_path) # 保存模型
save_results_1(res_dic, tag='train',
path=cfg.result_path) # 保存结果
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train") # 画出结果
# 测试
env, agent = env_agent_config(cfg)
agent.load(path=cfg.model_path) # 导入模型
res_dic = test(cfg, env, agent)
save_results_1(res_dic, tag='test',
path=cfg.result_path) # 保存结果
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'],cfg, tag="test") # 画出结果

View File

@@ -1,149 +0,0 @@
import sys
import os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import gym
import torch
import datetime
import numpy as np
from common.utils import save_results, make_dir
from common.utils import plot_rewards
from dqn import DQN
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
class Config:
'''超参数
'''
def __init__(self):
################################## 环境超参数 ###################################
self.algo_name = 'DQN' # 算法名称
self.env_name = 'SpaceInvaders-ram-v0' # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPUgjgjlkhfsf风刀霜的撒发十
self.seed = 10 # 随机种子置0则不设置随机种子
self.train_eps = 200 # 训练的回合数
self.test_eps = 30 # 测试的回合数
################################################################################
################################## 算法超参数 ###################################
self.gamma = 0.99 # 强化学习中的折扣因子
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 20000 # e-greedy策略中epsilon的衰减率
self.lr = 2e-4 # 学习率
self.memory_capacity = int(1e5) # 经验回放的容量
self.batch_size = 32 # mini-batch SGD中的批量大小
self.target_update = 4 # 目标网络的更新频率
self.hidden_dim = 512 # 网络隐藏层
################################################################################
################################# 保存结果相关参数 ################################
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
################################################################################
def env_agent_config(cfg):
''' 创建环境和智能体
'''
env = gym.make(cfg.env_name) # 创建环境
n_states = env.observation_space.shape[0] # 状态维度
n_actions = env.action_space.n # 动作维度
print(f"n states: {n_states}, n actions: {n_actions}")
agent = DQN(n_states, n_actions, cfg) # 创建智能体
if cfg.seed !=0: # 设置随机种子
torch.manual_seed(cfg.seed)
env.seed(cfg.seed)
np.random.seed(cfg.seed)
return env, agent
def train(cfg, env, agent):
''' 训练
'''
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.train_eps):
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
while True:
action = agent.choose_action(state) # 选择动作
next_state, reward, done, _ = env.step(action) # 更新环境返回transition
agent.memory.push(state, action, reward,
next_state, done) # 保存transition
state = next_state # 更新下一个状态
agent.update() # 更新智能体
ep_reward += reward # 累加奖励
if done:
break
if (i_ep + 1) % cfg.target_update == 0: # 智能体目标网络更新
agent.target_net.load_state_dict(agent.policy_net.state_dict())
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9 * ma_rewards[-1] + 0.1 * ep_reward)
else:
ma_rewards.append(ep_reward)
if (i_ep + 1) % 1 == 0:
print(f'Episode{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}, Epislon:{agent.epsilon(agent.frame_idx):.3f}')
print('完成训练!')
env.close()
return rewards, ma_rewards
def test(cfg, env, agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
############# 由于测试不需要使用epsilon-greedy策略所以相应的值设置为0 ###############
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
################################################################################
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.test_eps):
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
while True:
action = agent.choose_action(state) # 选择动作
next_state, reward, done, _ = env.step(action) # 更新环境返回transition
state = next_state # 更新下一个状态
ep_reward += reward # 累加奖励
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1] * 0.9 + ep_reward * 0.1)
else:
ma_rewards.append(ep_reward)
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
print('完成测试!')
env.close()
return rewards, ma_rewards
if __name__ == "__main__":
cfg = Config()
# 训练
env, agent = env_agent_config(cfg)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=cfg.model_path) # 保存模型
save_results(rewards, ma_rewards, tag='train',
path=cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果
# 测试
env, agent = env_agent_config(cfg)
agent.load(path=cfg.model_path) # 导入模型
rewards, ma_rewards = test(cfg, env, agent)
save_results(rewards, ma_rewards, tag='test',
path=cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, cfg, tag="test") # 画出结果