This commit is contained in:
JohnJim0816
2020-09-08 13:37:12 +08:00
parent 106cfcc714
commit ac98105833
12 changed files with 118 additions and 57 deletions

View File

@@ -5,7 +5,7 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 20:58:21
@LastEditor: John
@LastEditTime: 2020-07-20 23:01:02
LastEditTime: 2020-09-02 01:24:50
@Discription:
@Environment: python 3.7.7
'''
@@ -31,15 +31,15 @@ def get_args():
parser.add_argument("--memory_capacity", default=10000, type=int,help="capacity of Replay Memory")
parser.add_argument("--batch_size", default=128, type=int,help="batch size of memory sampling")
parser.add_argument("--max_episodes", default=200, type=int)
parser.add_argument("--max_steps", default=200, type=int)
parser.add_argument("--train_eps", default=200, type=int)
parser.add_argument("--train_steps", default=200, type=int)
parser.add_argument("--eval_eps", default=200, type=int) # 训练的最大episode数目
parser.add_argument("--eval_steps", default=200, type=int) # 训练每个episode的长度
parser.add_argument("--target_update", default=4, type=int,help="when(every default 10 eisodes) to update target net ")
config = parser.parse_args()
return config
if __name__ == "__main__":
def train():
cfg = get_args()
env = NormalizedActions(gym.make("Pendulum-v0"))
@@ -54,11 +54,12 @@ if __name__ == "__main__":
rewards = []
moving_average_rewards = []
for i_episode in range(1,cfg.max_episodes+1):
ep_steps = []
for i_episode in range(1,cfg.train_eps+1):
state=env.reset()
ou_noise.reset()
ep_reward = 0
for i_step in range(1,cfg.max_steps+1):
for i_step in range(1,cfg.train_steps+1):
action = agent.select_action(state)
action = ou_noise.get_action(action, i_step) # 即paper中的random process
next_state, reward, done, _ = env.step(action)
@@ -68,22 +69,79 @@ if __name__ == "__main__":
state = next_state
if done:
break
print('Episode:', i_episode, ' Reward: %i' % int(ep_reward),)
print('Episode:', i_episode, ' Reward: %i' % int(ep_reward),'n_steps:', i_step)
ep_steps.append(i_step)
rewards.append(ep_reward)
#
if i_episode == 1:
moving_average_rewards.append(ep_reward)
else:
moving_average_rewards.append(
0.9*moving_average_rewards[-1]+0.1*ep_reward)
print('Complete')
# 保存模型
import os
import numpy as np
save_path = os.path.dirname(__file__)+"/saved_model/"
if not os.path.exists(save_path):
os.mkdir(save_path)
agent.save_model(save_path+'checkpoint.pth')
# 存储reward等相关结果
output_path = os.path.dirname(__file__)+"/result/"
# 检测是否存在文件夹
if not os.path.exists(output_path):
os.mkdir(output_path)
np.save(output_path+"rewards.npy", rewards)
np.save(output_path+"moving_average_rewards.npy", moving_average_rewards)
np.save(output_path+"steps.npy", ep_steps)
plot(rewards)
plot(moving_average_rewards,ylabel="moving_average_rewards")
plot(moving_average_rewards,ylabel="moving_average_rewards")
plot(ep_steps, ylabel="steps_of_each_episode")
def eval():
cfg = get_args()
env = NormalizedActions(gym.make("Pendulum-v0"))
# 增加action噪声
ou_noise = OUNoise(env.action_space)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
agent=DDPG(n_states,n_actions, critic_lr=1e-3,
actor_lr=1e-4, gamma=0.99, soft_tau=1e-2, memory_capacity=100000, batch_size=128)
import os
save_path = os.path.dirname(__file__)+"/saved_model/"
if not os.path.exists(save_path):
os.mkdir(save_path)
agent.load_model(save_path+'checkpoint.pth')
rewards = []
moving_average_rewards = []
ep_steps = []
for i_episode in range(1, cfg.eval_eps+1):
state = env.reset() # reset环境状态
ep_reward = 0
for i_step in range(1, cfg.eval_steps+1):
action = agent.select_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action) # 更新环境参数
ep_reward += reward
state = next_state # 跳转到下一个状态
if done:
break
print('Episode:', i_episode, ' Reward: %i' %
int(ep_reward), 'n_steps:', i_step, 'done: ', done)
ep_steps.append(i_step)
rewards.append(ep_reward)
# 计算滑动窗口的reward
if i_episode == 1:
moving_average_rewards.append(ep_reward)
else:
moving_average_rewards.append(
0.9*moving_average_rewards[-1]+0.1*ep_reward)
plot(rewards,save_fig=False)
plot(moving_average_rewards, ylabel="moving_average_rewards",save_fig=False)
plot(ep_steps, ylabel="steps_of_each_episode",save_fig=False)
if __name__ == "__main__":
# train()
eval()