diff --git a/codes/ddpg/ddpg.py b/codes/ddpg/ddpg.py index e1b5a7e..3aded73 100644 --- a/codes/ddpg/ddpg.py +++ b/codes/ddpg/ddpg.py @@ -5,7 +5,7 @@ @Email: johnjim0816@gmail.com @Date: 2020-06-09 20:25:52 @LastEditor: John -@LastEditTime: 2020-06-14 11:43:17 +LastEditTime: 2020-09-02 01:19:13 @Discription: @Environment: python 3.7.7 ''' @@ -35,39 +35,41 @@ class DDPG: self.critic_optimizer = optim.Adam( self.critic.parameters(), lr=critic_lr) self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=actor_lr) - self.critic_criterion = nn.MSELoss() self.memory = ReplayBuffer(memory_capacity) self.batch_size = batch_size self.soft_tau = soft_tau self.gamma = gamma def select_action(self, state): - return self.actor.select_action(state) + state = torch.FloatTensor(state).unsqueeze(0).to(self.device) + action = self.actor(state) + # torch.detach()用于切断反向传播 + return action.detach().cpu().numpy()[0, 0] def update(self): if len(self.memory) < self.batch_size: return state, action, reward, next_state, done = self.memory.sample( - self.batch_size) + self.batch_size) # 将所有变量转为张量 state = torch.FloatTensor(state).to(self.device) next_state = torch.FloatTensor(next_state).to(self.device) action = torch.FloatTensor(action).to(self.device) reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device) - done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device) + # 注意critic将(s_t,a)作为输入 policy_loss = self.critic(state, self.actor(state)) + policy_loss = -policy_loss.mean() next_action = self.target_actor(next_state) target_value = self.target_critic(next_state, next_action.detach()) expected_value = reward + (1.0 - done) * self.gamma * target_value expected_value = torch.clamp(expected_value, -np.inf, np.inf) - + value = self.critic(state, action) - - value_loss = self.critic_criterion(value, expected_value.detach()) - + value_loss = nn.MSELoss()(value, expected_value.detach()) + self.actor_optimizer.zero_grad() policy_loss.backward() self.actor_optimizer.step() @@ -85,3 +87,8 @@ class DDPG: target_param.data * (1.0 - self.soft_tau) + param.data * self.soft_tau ) + def save_model(self,path): + torch.save(self.target_actor.state_dict(), path) + + def load_model(self,path): + self.actor.load_state_dict(torch.load(path)) \ No newline at end of file diff --git a/codes/ddpg/env.py b/codes/ddpg/env.py index 0b27401..7e707cb 100644 --- a/codes/ddpg/env.py +++ b/codes/ddpg/env.py @@ -5,7 +5,7 @@ @Email: johnjim0816@gmail.com @Date: 2020-06-10 15:28:30 @LastEditor: John -@LastEditTime: 2020-06-12 22:49:18 +LastEditTime: 2020-09-01 10:57:36 @Discription: @Environment: python 3.7.7 ''' @@ -13,7 +13,8 @@ import gym import numpy as np class NormalizedActions(gym.ActionWrapper): - + ''' 将action范围重定在[0.1]之间 + ''' def action(self, action): low_bound = self.action_space.low diff --git a/codes/ddpg/main.py b/codes/ddpg/main.py index 7e4b455..5215ff5 100644 --- a/codes/ddpg/main.py +++ b/codes/ddpg/main.py @@ -5,7 +5,7 @@ @Email: johnjim0816@gmail.com @Date: 2020-06-11 20:58:21 @LastEditor: John -@LastEditTime: 2020-07-20 23:01:02 +LastEditTime: 2020-09-02 01:24:50 @Discription: @Environment: python 3.7.7 ''' @@ -31,15 +31,15 @@ def get_args(): parser.add_argument("--memory_capacity", default=10000, type=int,help="capacity of Replay Memory") parser.add_argument("--batch_size", default=128, type=int,help="batch size of memory sampling") - parser.add_argument("--max_episodes", default=200, type=int) - parser.add_argument("--max_steps", default=200, type=int) + parser.add_argument("--train_eps", default=200, type=int) + parser.add_argument("--train_steps", default=200, type=int) + parser.add_argument("--eval_eps", default=200, type=int) # 训练的最大episode数目 + parser.add_argument("--eval_steps", default=200, type=int) # 训练每个episode的长度 parser.add_argument("--target_update", default=4, type=int,help="when(every default 10 eisodes) to update target net ") config = parser.parse_args() - return config -if __name__ == "__main__": - +def train(): cfg = get_args() env = NormalizedActions(gym.make("Pendulum-v0")) @@ -54,11 +54,12 @@ if __name__ == "__main__": rewards = [] moving_average_rewards = [] - for i_episode in range(1,cfg.max_episodes+1): + ep_steps = [] + for i_episode in range(1,cfg.train_eps+1): state=env.reset() ou_noise.reset() ep_reward = 0 - for i_step in range(1,cfg.max_steps+1): + for i_step in range(1,cfg.train_steps+1): action = agent.select_action(state) action = ou_noise.get_action(action, i_step) # 即paper中的random process next_state, reward, done, _ = env.step(action) @@ -68,22 +69,79 @@ if __name__ == "__main__": state = next_state if done: break - print('Episode:', i_episode, ' Reward: %i' % int(ep_reward),) + print('Episode:', i_episode, ' Reward: %i' % int(ep_reward),'n_steps:', i_step) + ep_steps.append(i_step) rewards.append(ep_reward) - # if i_episode == 1: moving_average_rewards.append(ep_reward) else: moving_average_rewards.append( 0.9*moving_average_rewards[-1]+0.1*ep_reward) print('Complete!') + # 保存模型 import os import numpy as np + save_path = os.path.dirname(__file__)+"/saved_model/" + if not os.path.exists(save_path): + os.mkdir(save_path) + agent.save_model(save_path+'checkpoint.pth') + # 存储reward等相关结果 output_path = os.path.dirname(__file__)+"/result/" + # 检测是否存在文件夹 if not os.path.exists(output_path): os.mkdir(output_path) np.save(output_path+"rewards.npy", rewards) np.save(output_path+"moving_average_rewards.npy", moving_average_rewards) - + np.save(output_path+"steps.npy", ep_steps) plot(rewards) - plot(moving_average_rewards,ylabel="moving_average_rewards") \ No newline at end of file + plot(moving_average_rewards,ylabel="moving_average_rewards") + plot(ep_steps, ylabel="steps_of_each_episode") + +def eval(): + cfg = get_args() + env = NormalizedActions(gym.make("Pendulum-v0")) + + # 增加action噪声 + ou_noise = OUNoise(env.action_space) + + n_states = env.observation_space.shape[0] + n_actions = env.action_space.shape[0] + agent=DDPG(n_states,n_actions, critic_lr=1e-3, + actor_lr=1e-4, gamma=0.99, soft_tau=1e-2, memory_capacity=100000, batch_size=128) + + import os + save_path = os.path.dirname(__file__)+"/saved_model/" + if not os.path.exists(save_path): + os.mkdir(save_path) + agent.load_model(save_path+'checkpoint.pth') + rewards = [] + moving_average_rewards = [] + ep_steps = [] + for i_episode in range(1, cfg.eval_eps+1): + state = env.reset() # reset环境状态 + ep_reward = 0 + for i_step in range(1, cfg.eval_steps+1): + action = agent.select_action(state) # 根据当前环境state选择action + next_state, reward, done, _ = env.step(action) # 更新环境参数 + ep_reward += reward + state = next_state # 跳转到下一个状态 + if done: + break + print('Episode:', i_episode, ' Reward: %i' % + int(ep_reward), 'n_steps:', i_step, 'done: ', done) + ep_steps.append(i_step) + rewards.append(ep_reward) + # 计算滑动窗口的reward + if i_episode == 1: + moving_average_rewards.append(ep_reward) + else: + moving_average_rewards.append( + 0.9*moving_average_rewards[-1]+0.1*ep_reward) + plot(rewards,save_fig=False) + plot(moving_average_rewards, ylabel="moving_average_rewards",save_fig=False) + plot(ep_steps, ylabel="steps_of_each_episode",save_fig=False) + + +if __name__ == "__main__": + # train() + eval() \ No newline at end of file diff --git a/codes/ddpg/model.py b/codes/ddpg/model.py index 5eed034..96a7cdf 100644 --- a/codes/ddpg/model.py +++ b/codes/ddpg/model.py @@ -5,7 +5,7 @@ @Email: johnjim0816@gmail.com @Date: 2020-06-10 15:03:59 @LastEditor: John -@LastEditTime: 2020-06-14 11:42:45 +LastEditTime: 2020-08-22 19:09:54 @Discription: @Environment: python 3.7.7 ''' @@ -20,11 +20,12 @@ class Critic(nn.Module): self.linear1 = nn.Linear(n_obs + n_actions, hidden_size) self.linear2 = nn.Linear(hidden_size, hidden_size) self.linear3 = nn.Linear(hidden_size, 1) - + # 随机初始化为较小的值 self.linear3.weight.data.uniform_(-init_w, init_w) self.linear3.bias.data.uniform_(-init_w, init_w) def forward(self, state, action): + # 按维数1拼接 x = torch.cat([state, action], 1) x = F.relu(self.linear1(x)) x = F.relu(self.linear2(x)) @@ -46,11 +47,4 @@ class Actor(nn.Module): x = F.relu(self.linear2(x)) x = F.tanh(self.linear3(x)) return x - - def select_action(self, state): - - device = torch.device("cuda" if torch.cuda.is_available() else "cpu") - state = torch.FloatTensor(state).unsqueeze(0).to(device) - # print(state) - action = self.forward(state) - return action.detach().cpu().numpy()[0, 0] \ No newline at end of file + \ No newline at end of file diff --git a/codes/ddpg/plot.py b/codes/ddpg/plot.py index 8cbe42c..6e9e145 100644 --- a/codes/ddpg/plot.py +++ b/codes/ddpg/plot.py @@ -5,39 +5,40 @@ @Email: johnjim0816@gmail.com @Date: 2020-06-11 16:30:09 @LastEditor: John -@LastEditTime: 2020-06-12 11:34:52 +LastEditTime: 2020-09-02 01:20:03 @Discription: @Environment: python 3.7.7 ''' import matplotlib.pyplot as plt import pandas as pd -import seaborn as sns; sns.set() +import seaborn as sns; import numpy as np import os -# def plot(item,ylabel='rewards'): -# plt.figure() -# plt.plot(np.arange(len(item)), item) -# plt.title(ylabel+' of DDPG') -# plt.ylabel(ylabel) -# plt.xlabel('episodes') -# plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png") -# plt.show() - -def plot(item,ylabel='rewards'): - df = pd.DataFrame(dict(time=np.arange(500), - value=np.random.randn(500).cumsum())) - g = sns.relplot(x="time", y="value", kind="line", data=df) - g.fig.autofmt_xdate() - # time = range(len(item)) - # sns.set(style="darkgrid", font_scale=1.5) - # sns.lineplot(time=time, data=item, color="r", condition="behavior_cloning") - # # sns.tsplot(time=time, data=x2, color="b", condition="dagger") - # plt.ylabel("Reward") - # plt.xlabel("Iteration Number") - # plt.title("Imitation Learning") - +def plot(item,ylabel='rewards',save_fig = True): + '''plot using searborn to plot + ''' + sns.set() + plt.figure() + plt.plot(np.arange(len(item)), item) + plt.title(ylabel+' of DDPG') + plt.ylabel(ylabel) + plt.xlabel('episodes') + plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png") plt.show() + +# def plot(item,ylabel='rewards'): +# +# df = pd.DataFrame(dict(time=np.arange(len(item)),value=item)) +# g = sns.relplot(x="time", y="value", kind="line", data=df) +# # g.fig.autofmt_xdate() +# # sns.lineplot(time=time, data=item, color="r", condition="behavior_cloning") +# # # sns.tsplot(time=time, data=x2, color="b", condition="dagger") +# # plt.ylabel("Reward") +# # plt.xlabel("Iteration Number") +# # plt.title("Imitation Learning") + + # plt.show() if __name__ == "__main__": output_path = os.path.dirname(__file__)+"/result/" diff --git a/codes/ddpg/result/moving_average_rewards.npy b/codes/ddpg/result/moving_average_rewards.npy index ac2d573..5055900 100644 Binary files a/codes/ddpg/result/moving_average_rewards.npy and b/codes/ddpg/result/moving_average_rewards.npy differ diff --git a/codes/ddpg/result/moving_average_rewards.png b/codes/ddpg/result/moving_average_rewards.png index f39cbd7..9725858 100644 Binary files a/codes/ddpg/result/moving_average_rewards.png and b/codes/ddpg/result/moving_average_rewards.png differ diff --git a/codes/ddpg/result/rewards.npy b/codes/ddpg/result/rewards.npy index 08e1a2e..fcb4f3e 100644 Binary files a/codes/ddpg/result/rewards.npy and b/codes/ddpg/result/rewards.npy differ diff --git a/codes/ddpg/result/rewards.png b/codes/ddpg/result/rewards.png index 098edf1..a39c983 100644 Binary files a/codes/ddpg/result/rewards.png and b/codes/ddpg/result/rewards.png differ diff --git a/codes/ddpg/result/steps.npy b/codes/ddpg/result/steps.npy new file mode 100644 index 0000000..59825bb Binary files /dev/null and b/codes/ddpg/result/steps.npy differ diff --git a/codes/ddpg/result/steps_of_each_episode.png b/codes/ddpg/result/steps_of_each_episode.png new file mode 100644 index 0000000..9b9e58b Binary files /dev/null and b/codes/ddpg/result/steps_of_each_episode.png differ diff --git a/codes/ddpg/saved_model/checkpoint.pth b/codes/ddpg/saved_model/checkpoint.pth new file mode 100644 index 0000000..d30efae Binary files /dev/null and b/codes/ddpg/saved_model/checkpoint.pth differ