Update chapter3_questions&keywords.md
This commit is contained in:
@@ -5,7 +5,6 @@
|
||||
- **P函数和R函数:** P函数反应的是状态转移的概率,即反应的环境的随机性,R函数就是Reward function。但是我们通常处于一个未知的环境(即P函数和R函数是未知的)。
|
||||
- **Q表格型表示方法:** 表示形式是一种表格形式,其中横坐标为 action(agent)的行为,纵坐标是环境的state,其对应着每一个时刻agent和环境的情况,并通过对应的reward反馈去做选择。一般情况下,Q表格是一个已经训练好的表格,不过,我们也可以每进行一步,就更新一下Q表格,然后用下一个状态的Q值来更新这个状态的Q值(即时序差分方法)。
|
||||
- **时序差分(Temporal Difference):** 一种Q函数(Q值)的更新方式,也就是可以拿下一步的 Q 值 $Q(S_{t+_1},A_{t+1})$ 来更新我这一步的 Q 值 $Q(S_t,A_t)$ 。完整的计算公式如下:$Q(S_t,A_t) \larr Q(S_t,A_t) + \alpha [R_{t+1}+\gamma Q(S_{t+1},A_{t+1})-Q(S_t,A_t)]$
|
||||
|
||||
- **SARSA算法:** 一种更新前一时刻状态的单步更新的强化学习算法,也是一种on-policy策略。该算法由于每次更新值函数需要知道前一步的状态(state),前一步的动作(action)、奖励(reward)、当前状态(state)、将要执行的动作(action),即 $(S_{t}, A_{t}, R_{t+1}, S_{t+1}, A_{t+1})$ 这几个值,所以被称为SARSA算法。agent每进行一次循环,都会用 $(S_{t}, A_{t}, R_{t+1}, S_{t+1}, A_{t+1})$ 对于前一步的Q值(函数)进行一次更新。
|
||||
|
||||
## 2 Questions
|
||||
|
||||
Reference in New Issue
Block a user