This commit is contained in:
johnjim0816
2021-04-29 14:44:25 +08:00
parent ed7b60fd5b
commit 895094a893
19 changed files with 538 additions and 33 deletions

View File

@@ -5,7 +5,7 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 20:58:21
@LastEditor: John
LastEditTime: 2021-04-08 21:50:13
LastEditTime: 2021-04-29 01:58:50
@Discription:
@Environment: python 3.7.7
'''
@@ -82,7 +82,6 @@ def train(cfg,env,agent):
if __name__ == "__main__":
cfg = DDPGConfig()
env =
env = NormalizedActions(gym.make("Pendulum-v0"))
env.seed(1) # 设置env随机种子
state_dim = env.observation_space.shape[0]

View File

@@ -5,22 +5,24 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:48:57
@LastEditor: John
LastEditTime: 2021-04-18 14:44:45
LastEditTime: 2021-04-29 02:02:12
@Discription:
@Environment: python 3.7.7
'''
from common.utils import save_results, make_dir, del_empty_dir
from common.plot import plot_rewards
from DQN.agent import DQN
import datetime
import torch
import gym
import sys
import os
import sys,os
curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import datetime
import torch
import gym
from common.utils import save_results, make_dir, del_empty_dir
from common.plot import plot_rewards
from DQN.agent import DQN
curr_time = datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S") # obtain current time

View File

@@ -37,13 +37,11 @@ python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.18.0
| [DoubleDQN](./DoubleDQN) | | [CartPole-v0](./envs/gym_info.md) | |
| [Hierarchical DQN](HierarchicalDQN) | [H-DQN Paper](https://arxiv.org/abs/1604.06057) | [CartPole-v0](./envs/gym_info.md) | |
| [PolicyGradient](./PolicyGradient) | | [CartPole-v0](./envs/gym_info.md) | |
| A2C | [A3C Paper](https://arxiv.org/abs/1602.01783) | [CartPole-v0](./envs/gym_info.md) | |
| A3C | [A3C Paper](https://arxiv.org/abs/1602.01783) | | |
| SAC | [SAC Paper](https://arxiv.org/abs/1801.01290) | | |
| [A2C](./A2C) | [A3C Paper](https://arxiv.org/abs/1602.01783) | [CartPole-v0](./envs/gym_info.md) | |
| [SAC](./SAC) | [SAC Paper](https://arxiv.org/abs/1801.01290) | [Pendulum-v0](./envs/gym_info.md) | |
| [PPO](./PPO) | [PPO paper](https://arxiv.org/abs/1707.06347) | [CartPole-v0](./envs/gym_info.md) | |
| [DDPG](./DDPG) | [DDPG Paper](https://arxiv.org/abs/1509.02971) | [Pendulum-v0](./envs/gym_info.md) | |
| [TD3](./TD3) | [TD3 Paper](https://arxiv.org/abs/1802.09477) | HalfCheetah-v2 | |
| GAIL | [GAIL Paper](https://arxiv.org/abs/1606.03476) | | |

View File

@@ -31,23 +31,20 @@ similar to file with ```eval```, which means to evaluate the agent.
## Schedule
| Name | Related materials | Used Envs | Notes |
| :--------------------------------------: | :---------------------------------------------------------: | ------------------------------------- | :---: |
| :--------------------------------------: | :----------------------------------------------------------: | ------------------------------------- | :---: |
| [On-Policy First-Visit MC](./MonteCarlo) | | [Racetrack](./envs/racetrack_env.md) | |
| [Q-Learning](./QLearning) | | [CliffWalking-v0](./envs/gym_info.md) | |
| [Sarsa](./Sarsa) | | [Racetrack](./envs/racetrack_env.md) | |
| [DQN](./DQN) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
| [DQN](./DQN) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf),[Nature DQN Paper](https://www.nature.com/articles/nature14236) | [CartPole-v0](./envs/gym_info.md) | |
| [DQN-cnn](./DQN_cnn) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
| [DoubleDQN](./DoubleDQN) | | [CartPole-v0](./envs/gym_info.md) | |
| [Hierarchical DQN](HierarchicalDQN) | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | [CartPole-v0](./envs/gym_info.md) | |
| [PolicyGradient](./PolicyGradient) | | [CartPole-v0](./envs/gym_info.md) | |
| A2C | [A3C Paper](https://arxiv.org/abs/1602.01783) | [CartPole-v0](./envs/gym_info.md) | |
| A3C | [A3C Paper](https://arxiv.org/abs/1602.01783) | | |
| SAC | [SAC Paper](https://arxiv.org/abs/1801.01290) | | |
| [A2C](./A2C) | [A3C Paper](https://arxiv.org/abs/1602.01783) | [CartPole-v0](./envs/gym_info.md) | |
| [SAC](./SAC) | [SAC Paper](https://arxiv.org/abs/1801.01290) | | |
| [PPO](./PPO) | [PPO paper](https://arxiv.org/abs/1707.06347) | [CartPole-v0](./envs/gym_info.md) | |
| [DDPG](./DDPG) | [DDPG Paper](https://arxiv.org/abs/1509.02971) | [Pendulum-v0](./envs/gym_info.md) | |
| [TD3](./TD3) | [TD3 Paper](https://arxiv.org/abs/1802.09477) | HalfCheetah-v2 | |
| GAIL | | | |
## Refs

110
codes/SAC/agent.py Normal file
View File

@@ -0,0 +1,110 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-04-29 12:53:54
LastEditor: JiangJi
LastEditTime: 2021-04-29 13:56:39
Discription:
Environment:
'''
import copy
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from common.memory import ReplayBuffer
from SAC.model import ValueNet,PolicyNet,SoftQNet
class SAC:
def __init__(self,state_dim,action_dim,cfg) -> None:
self.batch_size = cfg.batch_size
self.memory = ReplayBuffer(cfg.capacity)
self.device = cfg.device
self.value_net = ValueNet(state_dim, cfg.hidden_dim).to(self.device)
self.target_value_net = ValueNet(state_dim, cfg.hidden_dim).to(self.device)
self.soft_q_net = SoftQNet(state_dim, action_dim, cfg.hidden_dim).to(self.device)
self.policy_net = PolicyNet(state_dim, action_dim, cfg.hidden_dim).to(self.device)
self.value_optimizer = optim.Adam(self.value_net.parameters(), lr=cfg.value_lr)
self.soft_q_optimizer = optim.Adam(self.soft_q_net.parameters(), lr=cfg.soft_q_lr)
self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.policy_lr)
for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()):
target_param.data.copy_(param.data)
self.value_criterion = nn.MSELoss()
self.soft_q_criterion = nn.MSELoss()
def update(self, gamma=0.99,mean_lambda=1e-3,
std_lambda=1e-3,
z_lambda=0.0,
soft_tau=1e-2,
):
if len(self.memory) < self.batch_size:
return
state, action, reward, next_state, done = self.memory.sample(self.batch_size)
state = torch.FloatTensor(state).to(self.device)
next_state = torch.FloatTensor(next_state).to(self.device)
action = torch.FloatTensor(action).to(self.device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device)
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device)
expected_q_value = self.soft_q_net(state, action)
expected_value = self.value_net(state)
new_action, log_prob, z, mean, log_std = self.policy_net.evaluate(state)
target_value = self.target_value_net(next_state)
next_q_value = reward + (1 - done) * gamma * target_value
q_value_loss = self.soft_q_criterion(expected_q_value, next_q_value.detach())
expected_new_q_value = self.soft_q_net(state, new_action)
next_value = expected_new_q_value - log_prob
value_loss = self.value_criterion(expected_value, next_value.detach())
log_prob_target = expected_new_q_value - expected_value
policy_loss = (log_prob * (log_prob - log_prob_target).detach()).mean()
mean_loss = mean_lambda * mean.pow(2).mean()
std_loss = std_lambda * log_std.pow(2).mean()
z_loss = z_lambda * z.pow(2).sum(1).mean()
policy_loss += mean_loss + std_loss + z_loss
self.soft_q_optimizer.zero_grad()
q_value_loss.backward()
self.soft_q_optimizer.step()
self.value_optimizer.zero_grad()
value_loss.backward()
self.value_optimizer.step()
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()):
target_param.data.copy_(
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
def save(self, path):
torch.save(self.value_net.state_dict(), path + "sac_value")
torch.save(self.value_optimizer.state_dict(), path + "sac_value_optimizer")
torch.save(self.soft_q_net.state_dict(), path + "sac_soft_q")
torch.save(self.soft_q_optimizer.state_dict(), path + "sac_soft_q_optimizer")
torch.save(self.policy_net.state_dict(), path + "sac_policy")
torch.save(self.policy_optimizer.state_dict(), path + "sac_policy_optimizer")
def load(self, path):
self.value_net.load_state_dict(torch.load(path + "sac_value"))
self.value_optimizer.load_state_dict(torch.load(path + "sac_value_optimizer"))
self.target_value_net = copy.deepcopy(self.value_net)
self.soft_q_net.load_state_dict(torch.load(path + "sac_soft_q"))
self.soft_q_optimizer.load_state_dict(torch.load(path + "sac_soft_q_optimizer"))
self.policy_net.load_state_dict(torch.load(path + "sac_policy"))
self.policy_optimizer.load_state_dict(torch.load(path + "sac_policy_optimizer"))

29
codes/SAC/env.py Normal file
View File

@@ -0,0 +1,29 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-04-29 12:52:11
LastEditor: JiangJi
LastEditTime: 2021-04-29 12:52:31
Discription:
Environment:
'''
import gym
import numpy as np
class NormalizedActions(gym.ActionWrapper):
def action(self, action):
low = self.action_space.low
high = self.action_space.high
action = low + (action + 1.0) * 0.5 * (high - low)
action = np.clip(action, low, high)
return action
def reverse_action(self, action):
low = self.action_space.low
high = self.action_space.high
action = 2 * (action - low) / (high - low) - 1
action = np.clip(action, low, high)
return action

108
codes/SAC/model.py Normal file
View File

@@ -0,0 +1,108 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-04-29 12:53:58
LastEditor: JiangJi
LastEditTime: 2021-04-29 12:57:29
Discription:
Environment:
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Normal
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
class ValueNet(nn.Module):
def __init__(self, state_dim, hidden_dim, init_w=3e-3):
super(ValueNet, self).__init__()
self.linear1 = nn.Linear(state_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class SoftQNet(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3):
super(SoftQNet, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, 1)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action):
x = torch.cat([state, action], 1)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class PolicyNet(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3, log_std_min=-20, log_std_max=2):
super(PolicyNet, self).__init__()
self.log_std_min = log_std_min
self.log_std_max = log_std_max
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.mean_linear = nn.Linear(hidden_size, num_actions)
self.mean_linear.weight.data.uniform_(-init_w, init_w)
self.mean_linear.bias.data.uniform_(-init_w, init_w)
self.log_std_linear = nn.Linear(hidden_size, num_actions)
self.log_std_linear.weight.data.uniform_(-init_w, init_w)
self.log_std_linear.bias.data.uniform_(-init_w, init_w)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
mean = self.mean_linear(x)
log_std = self.log_std_linear(x)
log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max)
return mean, log_std
def evaluate(self, state, epsilon=1e-6):
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(mean, std)
z = normal.sample()
action = torch.tanh(z)
log_prob = normal.log_prob(z) - torch.log(1 - action.pow(2) + epsilon)
log_prob = log_prob.sum(-1, keepdim=True)
return action, log_prob, z, mean, log_std
def get_action(self, state):
state = torch.FloatTensor(state).unsqueeze(0).to(device)
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(mean, std)
z = normal.sample()
action = torch.tanh(z)
action = action.detach().cpu().numpy()
return action[0]

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

89
codes/SAC/task0_train.py Normal file
View File

@@ -0,0 +1,89 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-04-29 12:59:22
LastEditor: JiangJi
LastEditTime: 2021-04-29 13:56:56
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import gym
import torch
import datetime
from SAC.env import NormalizedActions
from SAC.agent import SAC
from common.utils import save_results, make_dir
from common.plot import plot_rewards
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
class SACConfig:
def __init__(self) -> None:
self.algo = 'SAC'
self.env = 'Pendulum-v0'
self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # path to save models
self.train_eps = 300
self.train_steps = 500
self.gamma = 0.99
self.mean_lambda=1e-3
self.std_lambda=1e-3
self.z_lambda=0.0
self.soft_tau=1e-2
self.value_lr = 3e-4
self.soft_q_lr = 3e-4
self.policy_lr = 3e-4
self.capacity = 1000000
self.hidden_dim = 256
self.batch_size = 128
self.device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
def train(cfg,env,agent):
rewards = []
ma_rewards = [] # moveing average reward
for i_ep in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
for i_step in range(cfg.train_steps):
action = agent.policy_net.get_action(state)
next_state, reward, done, _ = env.step(action)
agent.memory.push(state, action, reward, next_state, done)
agent.update()
state = next_state
ep_reward += reward
if done:
break
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}")
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
return rewards, ma_rewards
if __name__ == "__main__":
cfg=SACConfig()
env = NormalizedActions(gym.make("Pendulum-v0"))
action_dim = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
agent = SAC(state_dim,action_dim,cfg)
rewards,ma_rewards = train(cfg,env,agent)
make_dir(cfg.result_path,cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)

View File

@@ -0,0 +1,153 @@
#This code is from openai baseline
#https://github.com/openai/baselines/tree/master/baselines/common/vec_env
import numpy as np
from multiprocessing import Process, Pipe
def worker(remote, parent_remote, env_fn_wrapper):
parent_remote.close()
env = env_fn_wrapper.x()
while True:
cmd, data = remote.recv()
if cmd == 'step':
ob, reward, done, info = env.step(data)
if done:
ob = env.reset()
remote.send((ob, reward, done, info))
elif cmd == 'reset':
ob = env.reset()
remote.send(ob)
elif cmd == 'reset_task':
ob = env.reset_task()
remote.send(ob)
elif cmd == 'close':
remote.close()
break
elif cmd == 'get_spaces':
remote.send((env.observation_space, env.action_space))
else:
raise NotImplementedError
class VecEnv(object):
"""
An abstract asynchronous, vectorized environment.
"""
def __init__(self, num_envs, observation_space, action_space):
self.num_envs = num_envs
self.observation_space = observation_space
self.action_space = action_space
def reset(self):
"""
Reset all the environments and return an array of
observations, or a tuple of observation arrays.
If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
until step_async() is invoked again.
"""
pass
def step_async(self, actions):
"""
Tell all the environments to start taking a step
with the given actions.
Call step_wait() to get the results of the step.
You should not call this if a step_async run is
already pending.
"""
pass
def step_wait(self):
"""
Wait for the step taken with step_async().
Returns (obs, rews, dones, infos):
- obs: an array of observations, or a tuple of
arrays of observations.
- rews: an array of rewards
- dones: an array of "episode done" booleans
- infos: a sequence of info objects
"""
pass
def close(self):
"""
Clean up the environments' resources.
"""
pass
def step(self, actions):
self.step_async(actions)
return self.step_wait()
class CloudpickleWrapper(object):
"""
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
"""
def __init__(self, x):
self.x = x
def __getstate__(self):
import cloudpickle
return cloudpickle.dumps(self.x)
def __setstate__(self, ob):
import pickle
self.x = pickle.loads(ob)
class SubprocVecEnv(VecEnv):
def __init__(self, env_fns, spaces=None):
"""
envs: list of gym environments to run in subprocesses
"""
self.waiting = False
self.closed = False
nenvs = len(env_fns)
self.nenvs = nenvs
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn)))
for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)]
for p in self.ps:
p.daemon = True # if the main process crashes, we should not cause things to hang
p.start()
for remote in self.work_remotes:
remote.close()
self.remotes[0].send(('get_spaces', None))
observation_space, action_space = self.remotes[0].recv()
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
def step_async(self, actions):
for remote, action in zip(self.remotes, actions):
remote.send(('step', action))
self.waiting = True
def step_wait(self):
results = [remote.recv() for remote in self.remotes]
self.waiting = False
obs, rews, dones, infos = zip(*results)
return np.stack(obs), np.stack(rews), np.stack(dones), infos
def reset(self):
for remote in self.remotes:
remote.send(('reset', None))
return np.stack([remote.recv() for remote in self.remotes])
def reset_task(self):
for remote in self.remotes:
remote.send(('reset_task', None))
return np.stack([remote.recv() for remote in self.remotes])
def close(self):
if self.closed:
return
if self.waiting:
for remote in self.remotes:
remote.recv()
for remote in self.remotes:
remote.send(('close', None))
for p in self.ps:
p.join()
self.closed = True
def __len__(self):
return self.nenvs

20
codes/test.py Normal file
View File

@@ -0,0 +1,20 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-03-25 23:25:15
LastEditor: JiangJi
LastEditTime: 2021-04-28 21:36:50
Discription:
Environment:
'''
import random
dic = {0:"鳗鱼家",1:"一心",2:"bada"}
print("0:鳗鱼家1:一心2:bada")
print("三次随机,取最后一次选择")
for i in range(3):
if i ==2:
print(f"{dic[random.randint(0,2)]}")
else:
print(f"不去{dic[random.randint(0,2)]}")