hot update PG

This commit is contained in:
johnjim0816
2022-08-25 21:00:53 +08:00
parent 4f4658503e
commit 80f20c73be
34 changed files with 1391 additions and 1695 deletions

View File

@@ -1,118 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-11 17:59:16
LastEditor: John
LastEditTime: 2022-08-04 22:28:51
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import datetime
import argparse
from envs.racetrack_env import RacetrackEnv
from Sarsa.sarsa import Sarsa
from common.utils import save_results,make_dir,plot_rewards,save_args
def get_args():
""" 超参数
"""
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--algo_name',default='Sarsa',type=str,help="name of algorithm")
parser.add_argument('--env_name',default='CliffWalking-v0',type=str,help="name of environment")
parser.add_argument('--train_eps',default=300,type=int,help="episodes of training") # 训练的回合数
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") # 测试的回合数
parser.add_argument('--ep_max_steps',default=200,type=int) # 每回合最大的部署
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor") # 折扣因子
parser.add_argument('--epsilon_start',default=0.90,type=float,help="initial value of epsilon") # e-greedy策略中初始epsilon
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon") # e-greedy策略中的终止epsilon
parser.add_argument('--epsilon_decay',default=200,type=int,help="decay rate of epsilon") # e-greedy策略中epsilon的衰减率
parser.add_argument('--lr',default=0.2,type=float,help="learning rate")
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/results/' )
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/models/' ) # path to save models
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
args = parser.parse_args()
return args
def env_agent_config(cfg,seed=1):
env = RacetrackEnv()
n_actions = 9 # 动作数
agent = Sarsa(n_actions,cfg)
return env,agent
def train(cfg,env,agent):
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录奖励
for i_ep in range(cfg.train_eps):
state = env.reset()
action = agent.sample(state)
ep_reward = 0
# while True:
for _ in range(cfg.ep_max_steps):
next_state, reward, done = env.step(action)
ep_reward+=reward
next_action = agent.sample(next_state)
agent.update(state, action, reward, next_state, next_action,done)
state = next_state
action = next_action
if done:
break
rewards.append(ep_reward)
if (i_ep+1)%2==0:
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.1f}Epsilon{agent.epsilon}")
print('完成训练!')
return {"rewards":rewards}
def test(cfg,env,agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = []
for i_ep in range(cfg.test_eps):
state = env.reset()
ep_reward = 0
# while True:
for _ in range(cfg.ep_max_steps):
action = agent.predict(state)
next_state, reward, done = env.step(action)
ep_reward+=reward
state = next_state
if done:
break
rewards.append(ep_reward)
print(f"回合数:{i_ep+1}/{cfg.test_eps}, 奖励:{ep_reward:.1f}")
print('完成测试!')
return {"rewards":rewards}
if __name__ == "__main__":
cfg = get_args()
# 训练
env, agent = env_agent_config(cfg)
res_dic = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
save_args(cfg) # save parameters
agent.save(path=cfg.model_path) # save model
save_results(res_dic, tag='train',
path=cfg.result_path)
plot_rewards(res_dic['rewards'], cfg, tag="train")
# 测试
env, agent = env_agent_config(cfg)
agent.load(path=cfg.model_path) # 导入模型
res_dic = test(cfg, env, agent)
save_results(res_dic, tag='test',
path=cfg.result_path) # 保存结果
plot_rewards(res_dic['rewards'], cfg, tag="test") # 画出结果