hot update DQN
This commit is contained in:
@@ -71,7 +71,7 @@ class DQN:
|
||||
return
|
||||
else:
|
||||
if not self.update_flag:
|
||||
print("begin to update!")
|
||||
print("Begin to update!")
|
||||
self.update_flag = True
|
||||
# sample a batch of transitions from replay buffer
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
|
||||
|
||||
@@ -27,7 +27,7 @@ def get_args():
|
||||
parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor")
|
||||
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
|
||||
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
|
||||
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon")
|
||||
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon, the higher value, the slower decay")
|
||||
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
|
||||
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
|
||||
parser.add_argument('--batch_size',default=64,type=int)
|
||||
@@ -64,8 +64,8 @@ def env_agent_config(cfg):
|
||||
def train(cfg, env, agent):
|
||||
''' 训练
|
||||
'''
|
||||
print("start training!")
|
||||
print(f"Env: {cfg['env_name']}, Algo: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
print("Start training!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = []
|
||||
for i_ep in range(cfg["train_eps"]):
|
||||
@@ -89,17 +89,17 @@ def train(cfg, env, agent):
|
||||
rewards.append(ep_reward)
|
||||
if (i_ep + 1) % 10 == 0:
|
||||
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}: Epislon: {agent.epsilon:.3f}')
|
||||
print("finish training!")
|
||||
print("Finish training!")
|
||||
env.close()
|
||||
res_dic = {'episodes':range(len(rewards)),'rewards':rewards}
|
||||
return res_dic
|
||||
|
||||
def test(cfg, env, agent):
|
||||
print("start testing!")
|
||||
print(f"Env: {cfg.env_name}, Algo: {cfg.algo_name}, Device: {cfg.device}")
|
||||
print("Start testing!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = []
|
||||
for i_ep in range(cfg.test_eps):
|
||||
for i_ep in range(cfg['test_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
@@ -113,8 +113,8 @@ def test(cfg, env, agent):
|
||||
break
|
||||
steps.append(ep_step)
|
||||
rewards.append(ep_reward)
|
||||
print(f'Episode: {i_ep+1}/{cfg.test_eps},Reward: {ep_reward:.2f}')
|
||||
print("finish testing!")
|
||||
print(f"Episode: {i_ep+1}/{cfg['test_eps']},Reward: {ep_reward:.2f}")
|
||||
print("Finish testing!")
|
||||
env.close()
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards}
|
||||
|
||||
|
||||
Binary file not shown.
@@ -0,0 +1 @@
|
||||
{"algo_name": "DQN", "env_name": "Acrobot-v1", "train_eps": 100, "test_eps": 20, "gamma": 0.95, "epsilon_start": 0.95, "epsilon_end": 0.01, "epsilon_decay": 1500, "lr": 0.002, "memory_capacity": 200000, "batch_size": 128, "target_update": 4, "hidden_dim": 256, "device": "cuda", "seed": 10, "show_fig": false, "save_fig": true, "result_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/Acrobot-v1/20220824-124401/results", "model_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/Acrobot-v1/20220824-124401/models", "n_states": 6, "n_actions": 3}
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 51 KiB |
@@ -0,0 +1,21 @@
|
||||
episodes,rewards
|
||||
0,-79.0
|
||||
1,-113.0
|
||||
2,-81.0
|
||||
3,-132.0
|
||||
4,-110.0
|
||||
5,-114.0
|
||||
6,-80.0
|
||||
7,-101.0
|
||||
8,-78.0
|
||||
9,-91.0
|
||||
10,-107.0
|
||||
11,-87.0
|
||||
12,-105.0
|
||||
13,-91.0
|
||||
14,-128.0
|
||||
15,-132.0
|
||||
16,-119.0
|
||||
17,-77.0
|
||||
18,-89.0
|
||||
19,-134.0
|
||||
|
Binary file not shown.
|
After Width: | Height: | Size: 54 KiB |
@@ -0,0 +1,101 @@
|
||||
episodes,rewards
|
||||
0,-500.0
|
||||
1,-500.0
|
||||
2,-500.0
|
||||
3,-370.0
|
||||
4,-449.0
|
||||
5,-500.0
|
||||
6,-312.0
|
||||
7,-374.0
|
||||
8,-180.0
|
||||
9,-154.0
|
||||
10,-137.0
|
||||
11,-185.0
|
||||
12,-135.0
|
||||
13,-302.0
|
||||
14,-146.0
|
||||
15,-137.0
|
||||
16,-119.0
|
||||
17,-149.0
|
||||
18,-217.0
|
||||
19,-191.0
|
||||
20,-157.0
|
||||
21,-166.0
|
||||
22,-138.0
|
||||
23,-135.0
|
||||
24,-182.0
|
||||
25,-130.0
|
||||
26,-175.0
|
||||
27,-222.0
|
||||
28,-133.0
|
||||
29,-108.0
|
||||
30,-250.0
|
||||
31,-119.0
|
||||
32,-135.0
|
||||
33,-148.0
|
||||
34,-194.0
|
||||
35,-194.0
|
||||
36,-186.0
|
||||
37,-131.0
|
||||
38,-185.0
|
||||
39,-79.0
|
||||
40,-129.0
|
||||
41,-271.0
|
||||
42,-117.0
|
||||
43,-159.0
|
||||
44,-156.0
|
||||
45,-117.0
|
||||
46,-158.0
|
||||
47,-153.0
|
||||
48,-119.0
|
||||
49,-164.0
|
||||
50,-134.0
|
||||
51,-231.0
|
||||
52,-117.0
|
||||
53,-119.0
|
||||
54,-136.0
|
||||
55,-173.0
|
||||
56,-202.0
|
||||
57,-133.0
|
||||
58,-142.0
|
||||
59,-169.0
|
||||
60,-137.0
|
||||
61,-123.0
|
||||
62,-205.0
|
||||
63,-107.0
|
||||
64,-194.0
|
||||
65,-150.0
|
||||
66,-143.0
|
||||
67,-218.0
|
||||
68,-145.0
|
||||
69,-90.0
|
||||
70,-107.0
|
||||
71,-169.0
|
||||
72,-125.0
|
||||
73,-142.0
|
||||
74,-145.0
|
||||
75,-94.0
|
||||
76,-150.0
|
||||
77,-134.0
|
||||
78,-159.0
|
||||
79,-137.0
|
||||
80,-146.0
|
||||
81,-191.0
|
||||
82,-242.0
|
||||
83,-117.0
|
||||
84,-92.0
|
||||
85,-193.0
|
||||
86,-239.0
|
||||
87,-173.0
|
||||
88,-140.0
|
||||
89,-157.0
|
||||
90,-133.0
|
||||
91,-148.0
|
||||
92,-87.0
|
||||
93,-398.0
|
||||
94,-98.0
|
||||
95,-121.0
|
||||
96,-102.0
|
||||
97,-120.0
|
||||
98,-195.0
|
||||
99,-219.0
|
||||
|
Binary file not shown.
@@ -1 +0,0 @@
|
||||
{"algo_name": "DQN", "env_name": "CartPole-v0", "train_eps": 200, "test_eps": 20, "gamma": 0.95, "epsilon_start": 0.95, "epsilon_end": 0.01, "epsilon_decay": 500, "lr": 0.0001, "memory_capacity": 100000, "batch_size": 64, "target_update": 4, "hidden_dim": 256, "device": "cpu", "seed": 10, "result_path": "/Users/jj/Desktop/rl-tutorials/codes/DQN/outputs/CartPole-v0/20220818-143132/results", "model_path": "/Users/jj/Desktop/rl-tutorials/codes/DQN/outputs/CartPole-v0/20220818-143132/models", "show_fig": false, "save_fig": true}
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 27 KiB |
@@ -1,21 +0,0 @@
|
||||
episodes,rewards
|
||||
0,200.0
|
||||
1,200.0
|
||||
2,200.0
|
||||
3,200.0
|
||||
4,200.0
|
||||
5,200.0
|
||||
6,200.0
|
||||
7,200.0
|
||||
8,200.0
|
||||
9,200.0
|
||||
10,200.0
|
||||
11,200.0
|
||||
12,200.0
|
||||
13,200.0
|
||||
14,200.0
|
||||
15,200.0
|
||||
16,200.0
|
||||
17,200.0
|
||||
18,200.0
|
||||
19,200.0
|
||||
|
Binary file not shown.
|
Before Width: | Height: | Size: 38 KiB |
@@ -1,201 +0,0 @@
|
||||
episodes,rewards
|
||||
0,38.0
|
||||
1,16.0
|
||||
2,37.0
|
||||
3,15.0
|
||||
4,22.0
|
||||
5,34.0
|
||||
6,20.0
|
||||
7,12.0
|
||||
8,16.0
|
||||
9,14.0
|
||||
10,13.0
|
||||
11,21.0
|
||||
12,14.0
|
||||
13,12.0
|
||||
14,17.0
|
||||
15,12.0
|
||||
16,10.0
|
||||
17,14.0
|
||||
18,10.0
|
||||
19,10.0
|
||||
20,16.0
|
||||
21,9.0
|
||||
22,14.0
|
||||
23,13.0
|
||||
24,10.0
|
||||
25,9.0
|
||||
26,12.0
|
||||
27,12.0
|
||||
28,14.0
|
||||
29,11.0
|
||||
30,9.0
|
||||
31,8.0
|
||||
32,9.0
|
||||
33,11.0
|
||||
34,12.0
|
||||
35,10.0
|
||||
36,11.0
|
||||
37,10.0
|
||||
38,10.0
|
||||
39,18.0
|
||||
40,13.0
|
||||
41,15.0
|
||||
42,10.0
|
||||
43,9.0
|
||||
44,14.0
|
||||
45,14.0
|
||||
46,23.0
|
||||
47,17.0
|
||||
48,15.0
|
||||
49,15.0
|
||||
50,20.0
|
||||
51,28.0
|
||||
52,36.0
|
||||
53,36.0
|
||||
54,23.0
|
||||
55,27.0
|
||||
56,53.0
|
||||
57,19.0
|
||||
58,35.0
|
||||
59,62.0
|
||||
60,57.0
|
||||
61,38.0
|
||||
62,61.0
|
||||
63,65.0
|
||||
64,58.0
|
||||
65,43.0
|
||||
66,67.0
|
||||
67,56.0
|
||||
68,91.0
|
||||
69,128.0
|
||||
70,71.0
|
||||
71,126.0
|
||||
72,100.0
|
||||
73,200.0
|
||||
74,200.0
|
||||
75,200.0
|
||||
76,200.0
|
||||
77,200.0
|
||||
78,200.0
|
||||
79,200.0
|
||||
80,200.0
|
||||
81,200.0
|
||||
82,200.0
|
||||
83,200.0
|
||||
84,200.0
|
||||
85,200.0
|
||||
86,200.0
|
||||
87,200.0
|
||||
88,200.0
|
||||
89,200.0
|
||||
90,200.0
|
||||
91,200.0
|
||||
92,200.0
|
||||
93,200.0
|
||||
94,200.0
|
||||
95,200.0
|
||||
96,200.0
|
||||
97,200.0
|
||||
98,200.0
|
||||
99,200.0
|
||||
100,200.0
|
||||
101,200.0
|
||||
102,200.0
|
||||
103,200.0
|
||||
104,200.0
|
||||
105,200.0
|
||||
106,200.0
|
||||
107,200.0
|
||||
108,200.0
|
||||
109,200.0
|
||||
110,200.0
|
||||
111,200.0
|
||||
112,200.0
|
||||
113,200.0
|
||||
114,200.0
|
||||
115,200.0
|
||||
116,200.0
|
||||
117,200.0
|
||||
118,200.0
|
||||
119,200.0
|
||||
120,200.0
|
||||
121,200.0
|
||||
122,200.0
|
||||
123,200.0
|
||||
124,200.0
|
||||
125,200.0
|
||||
126,200.0
|
||||
127,200.0
|
||||
128,200.0
|
||||
129,200.0
|
||||
130,200.0
|
||||
131,200.0
|
||||
132,200.0
|
||||
133,200.0
|
||||
134,200.0
|
||||
135,200.0
|
||||
136,200.0
|
||||
137,200.0
|
||||
138,200.0
|
||||
139,200.0
|
||||
140,200.0
|
||||
141,200.0
|
||||
142,200.0
|
||||
143,200.0
|
||||
144,200.0
|
||||
145,200.0
|
||||
146,200.0
|
||||
147,200.0
|
||||
148,200.0
|
||||
149,200.0
|
||||
150,200.0
|
||||
151,200.0
|
||||
152,200.0
|
||||
153,200.0
|
||||
154,200.0
|
||||
155,200.0
|
||||
156,200.0
|
||||
157,200.0
|
||||
158,200.0
|
||||
159,200.0
|
||||
160,200.0
|
||||
161,200.0
|
||||
162,200.0
|
||||
163,200.0
|
||||
164,200.0
|
||||
165,200.0
|
||||
166,200.0
|
||||
167,200.0
|
||||
168,200.0
|
||||
169,200.0
|
||||
170,200.0
|
||||
171,200.0
|
||||
172,200.0
|
||||
173,200.0
|
||||
174,200.0
|
||||
175,200.0
|
||||
176,200.0
|
||||
177,200.0
|
||||
178,200.0
|
||||
179,200.0
|
||||
180,200.0
|
||||
181,200.0
|
||||
182,200.0
|
||||
183,200.0
|
||||
184,200.0
|
||||
185,200.0
|
||||
186,200.0
|
||||
187,200.0
|
||||
188,200.0
|
||||
189,200.0
|
||||
190,200.0
|
||||
191,200.0
|
||||
192,200.0
|
||||
193,200.0
|
||||
194,200.0
|
||||
195,200.0
|
||||
196,200.0
|
||||
197,200.0
|
||||
198,200.0
|
||||
199,200.0
|
||||
|
@@ -1,133 +0,0 @@
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
import numpy as np
|
||||
import argparse
|
||||
from common.utils import save_results,all_seed
|
||||
from common.utils import plot_rewards,save_args
|
||||
from common.models import MLP
|
||||
from common.memories import ReplayBuffer
|
||||
from dqn import DQN
|
||||
|
||||
def get_args():
|
||||
""" hyperparameters
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor")
|
||||
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
|
||||
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
|
||||
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon")
|
||||
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
|
||||
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
|
||||
parser.add_argument('--batch_size',default=64,type=int)
|
||||
parser.add_argument('--target_update',default=4,type=int)
|
||||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--seed',default=10,type=int,help="seed")
|
||||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/results' )
|
||||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/models' )
|
||||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
def env_agent_config(cfg):
|
||||
''' create env and agent
|
||||
'''
|
||||
env = gym.make(cfg.env_name) # create env
|
||||
if cfg.seed !=0: # set random seed
|
||||
all_seed(env,seed=cfg.seed)
|
||||
n_states = env.observation_space.shape[0] # state dimension
|
||||
n_actions = env.action_space.n # action dimension
|
||||
print(f"state dim: {n_states}, action dim: {n_actions}")
|
||||
model = MLP(n_states,n_actions,hidden_dim=cfg.hidden_dim)
|
||||
memory = ReplayBuffer(cfg.memory_capacity) # replay buffer
|
||||
agent = DQN(n_actions,model,memory,cfg) # create agent
|
||||
return env, agent
|
||||
|
||||
def train(cfg, env, agent):
|
||||
''' 训练
|
||||
'''
|
||||
print("start training!")
|
||||
print(f"Env: {cfg.env_name}, Algo: {cfg.algo_name}, Device: {cfg.device}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = []
|
||||
for i_ep in range(cfg.train_eps):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
while True:
|
||||
ep_step += 1
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, done, _ = env.step(action) # update env and return transitions
|
||||
agent.memory.push(state, action, reward,
|
||||
next_state, done) # save transitions
|
||||
state = next_state # update next state for env
|
||||
agent.update() # update agent
|
||||
ep_reward += reward #
|
||||
if done:
|
||||
break
|
||||
if (i_ep + 1) % cfg.target_update == 0: # target net update, target_update means "C" in pseucodes
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
steps.append(ep_step)
|
||||
rewards.append(ep_reward)
|
||||
if (i_ep + 1) % 10 == 0:
|
||||
print(f'Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}: Epislon: {agent.epsilon:.3f}')
|
||||
print("finish training!")
|
||||
env.close()
|
||||
res_dic = {'episodes':range(len(rewards)),'rewards':rewards}
|
||||
return res_dic
|
||||
|
||||
def test(cfg, env, agent):
|
||||
print("start testing!")
|
||||
print(f"Env: {cfg.env_name}, Algo: {cfg.algo_name}, Device: {cfg.device}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = []
|
||||
for i_ep in range(cfg.test_eps):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
while True:
|
||||
ep_step+=1
|
||||
action = agent.predict_action(state) # predict action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
steps.append(ep_step)
|
||||
rewards.append(ep_reward)
|
||||
print(f'Episode: {i_ep+1}/{cfg.test_eps},Reward: {ep_reward:.2f}')
|
||||
print("finish testing!")
|
||||
env.close()
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
# training
|
||||
env, agent = env_agent_config(cfg)
|
||||
res_dic = train(cfg, env, agent)
|
||||
save_args(cfg,path = cfg.result_path) # save parameters
|
||||
agent.save_model(path = cfg.model_path) # save models
|
||||
save_results(res_dic, tag = 'train', path = cfg.result_path) # save results
|
||||
plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "train") # plot results
|
||||
# testing
|
||||
env, agent = env_agent_config(cfg) # create new env for testing, sometimes can ignore this step
|
||||
agent.load_model(path = cfg.model_path) # load model
|
||||
res_dic = test(cfg, env, agent)
|
||||
save_results(res_dic, tag='test',
|
||||
path = cfg.result_path)
|
||||
plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "test")
|
||||
Binary file not shown.
@@ -1,15 +0,0 @@
|
||||
{
|
||||
"algo_name": "Q-learning",
|
||||
"env_name": "CliffWalking-v0",
|
||||
"train_eps": 400,
|
||||
"test_eps": 20,
|
||||
"gamma": 0.9,
|
||||
"epsilon_start": 0.95,
|
||||
"epsilon_end": 0.01,
|
||||
"epsilon_decay": 300,
|
||||
"lr": 0.1,
|
||||
"device": "cpu",
|
||||
"result_path": "/root/Desktop/rl-tutorials/codes/QLearning/outputs/CliffWalking-v0/20220802-163256/results/",
|
||||
"model_path": "/root/Desktop/rl-tutorials/codes/QLearning/outputs/CliffWalking-v0/20220802-163256/models/",
|
||||
"save_fig": true
|
||||
}
|
||||
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 25 KiB |
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 36 KiB |
@@ -1,127 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2022-08-10 11:25:56
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys
|
||||
import os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加路径到系统路径
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
import argparse
|
||||
from envs.gridworld_env import CliffWalkingWapper
|
||||
from qlearning import QLearning
|
||||
from common.utils import plot_rewards,save_args
|
||||
from common.utils import save_results,make_dir
|
||||
|
||||
def get_args():
|
||||
"""
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='Q-learning',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CliffWalking-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=400,type=int,help="episodes of training") # 训练的回合数
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") # 测试的回合数
|
||||
parser.add_argument('--gamma',default=0.90,type=float,help="discounted factor") # 折扣因子
|
||||
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon") # e-greedy策略中初始epsilon
|
||||
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon") # e-greedy策略中的终止epsilon
|
||||
parser.add_argument('--epsilon_decay',default=300,type=int,help="decay rate of epsilon") # e-greedy策略中epsilon的衰减率
|
||||
parser.add_argument('--lr',default=0.1,type=float,help="learning rate")
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/results/',type=str )
|
||||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/models/',type=str,help="path to save models")
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
|
||||
def train(cfg,env,agent):
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录每个回合的奖励
|
||||
state = env.reset() # 重置环境,即开始新的回合
|
||||
while True:
|
||||
action = agent.sample(state) # 根据算法采样一个动作
|
||||
next_state, reward, done, _ = env.step(action) # 与环境进行一次动作交互
|
||||
agent.update(state, action, reward, next_state, done) # Q学习算法更新
|
||||
state = next_state # 更新状态
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.1f},Epsilon:{agent.epsilon}")
|
||||
print('完成训练!')
|
||||
return {"rewards":rewards}
|
||||
|
||||
def test(cfg,env,agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
for i_ep in range(cfg.test_eps):
|
||||
ep_reward = 0 # 记录每个episode的reward
|
||||
state = env.reset() # 重置环境, 重新开一局(即开始新的一个回合)
|
||||
while True:
|
||||
action = agent.predict(state) # 根据算法选择一个动作
|
||||
next_state, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||||
state = next_state # 更新状态
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
print(f"回合数:{i_ep+1}/{cfg.test_eps}, 奖励:{ep_reward:.1f}")
|
||||
print('完成测试!')
|
||||
return {"rewards":rewards}
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
'''创建环境和智能体
|
||||
Args:
|
||||
cfg ([type]): [description]
|
||||
seed (int, optional): 随机种子. Defaults to 1.
|
||||
Returns:
|
||||
env [type]: 环境
|
||||
agent : 智能体
|
||||
'''
|
||||
env = gym.make(cfg.env_name)
|
||||
env = CliffWalkingWapper(env)
|
||||
env.seed(seed) # 设置随机种子
|
||||
n_states = env.observation_space.n # 状态维度
|
||||
n_actions = env.action_space.n # 动作维度
|
||||
print(f"状态数:{n_states},动作数:{n_actions}")
|
||||
agent = QLearning(n_actions,cfg)
|
||||
return env,agent
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
# 训练
|
||||
env, agent = env_agent_config(cfg)
|
||||
res_dic = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path)
|
||||
save_args(cfg) # save parameters
|
||||
agent.save(path=cfg.model_path) # save model
|
||||
save_results(res_dic, tag='train',
|
||||
path=cfg.result_path)
|
||||
plot_rewards(res_dic['rewards'], cfg, tag="train")
|
||||
# 测试
|
||||
env, agent = env_agent_config(cfg)
|
||||
agent.load(path=cfg.model_path) # 导入模型
|
||||
res_dic = test(cfg, env, agent)
|
||||
save_results(res_dic, tag='test',
|
||||
path=cfg.result_path) # 保存结果
|
||||
plot_rewards(res_dic['rewards'], cfg, tag="test") # 画出结果
|
||||
|
||||
|
||||
|
||||
@@ -1,4 +0,0 @@
|
||||
|
||||
class SAC:
|
||||
def __init__(self,n_actions,model,memory,cfg):
|
||||
pass
|
||||
15
projects/codes/scripts/DQN_task2.sh
Normal file
15
projects/codes/scripts/DQN_task2.sh
Normal file
@@ -0,0 +1,15 @@
|
||||
# run DQN on Acrobot-v1, not the best tuned parameters
|
||||
|
||||
# source conda, if you are already in proper conda environment, then comment the codes util "conda activate easyrl"
|
||||
if [ -f "$HOME/anaconda3/etc/profile.d/conda.sh" ]; then
|
||||
echo "source file at ~/anaconda3/etc/profile.d/conda.sh"
|
||||
source ~/anaconda3/etc/profile.d/conda.sh
|
||||
elif [ -f "$HOME/opt/anaconda3/etc/profile.d/conda.sh" ]; then
|
||||
echo "source file at ~/opt/anaconda3/etc/profile.d/conda.sh"
|
||||
source ~/opt/anaconda3/etc/profile.d/conda.sh
|
||||
else
|
||||
echo 'please manually config the conda source path'
|
||||
fi
|
||||
conda activate easyrl # easyrl here can be changed to another name of conda env that you have created
|
||||
codes_dir=$(dirname $(dirname $(readlink -f "$0"))) # "codes" path
|
||||
python $codes_dir/DQN/main.py --env_name Acrobot-v1 --train_eps 100 --epsilon_decay 1500 --lr 0.002 --memory_capacity 200000 --batch_size 128 --device cuda
|
||||
Reference in New Issue
Block a user