hot update PG
This commit is contained in:
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-12 16:58:16
|
||||
LastEditor: John
|
||||
LastEditTime: 2022-08-04 22:22:16
|
||||
LastEditTime: 2022-08-25 00:23:22
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -14,45 +14,51 @@ from collections import defaultdict
|
||||
import torch
|
||||
import math
|
||||
class Sarsa(object):
|
||||
def __init__(self,
|
||||
n_actions,cfg):
|
||||
self.n_actions = n_actions
|
||||
self.lr = cfg.lr
|
||||
self.gamma = cfg.gamma
|
||||
self.sample_count = 0
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.Q = defaultdict(lambda: np.zeros(n_actions)) # Q table
|
||||
def sample(self, state):
|
||||
def __init__(self,cfg):
|
||||
self.n_actions = cfg['n_actions']
|
||||
self.lr = cfg['lr']
|
||||
self.gamma = cfg['gamma']
|
||||
self.epsilon = cfg['epsilon_start']
|
||||
self.sample_count = 0
|
||||
self.epsilon_start = cfg['epsilon_start']
|
||||
self.epsilon_end = cfg['epsilon_end']
|
||||
self.epsilon_decay = cfg['epsilon_decay']
|
||||
self.Q_table = defaultdict(lambda: np.zeros(self.n_actions)) # Q table
|
||||
def sample_action(self, state):
|
||||
''' another way to represent e-greedy policy
|
||||
'''
|
||||
self.sample_count += 1
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
math.exp(-1. * self.sample_count / self.epsilon_decay) # The probability to select a random action, is is log decayed
|
||||
best_action = np.argmax(self.Q[state])
|
||||
best_action = np.argmax(self.Q_table[state])
|
||||
action_probs = np.ones(self.n_actions, dtype=float) * self.epsilon / self.n_actions
|
||||
action_probs[best_action] += (1.0 - self.epsilon)
|
||||
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
|
||||
return action
|
||||
def predict(self,state):
|
||||
return np.argmax(self.Q[state])
|
||||
def update(self, state, action, reward, next_state, next_action,done):
|
||||
Q_predict = self.Q[state][action]
|
||||
if done:
|
||||
Q_target = reward # 终止状态
|
||||
else:
|
||||
Q_target = reward + self.gamma * self.Q[next_state][next_action] # 与Q learning不同,Sarsa是拿下一步动作对应的Q值去更新
|
||||
self.Q[state][action] += self.lr * (Q_target - Q_predict)
|
||||
def save(self,path):
|
||||
'''把 Q表格 的数据保存到文件中
|
||||
def predict_action(self,state):
|
||||
''' predict action while testing
|
||||
'''
|
||||
action = np.argmax(self.Q_table[state])
|
||||
return action
|
||||
def update(self, state, action, reward, next_state, next_action,done):
|
||||
Q_predict = self.Q_table[state][action]
|
||||
if done:
|
||||
Q_target = reward # terminal state
|
||||
else:
|
||||
Q_target = reward + self.gamma * self.Q_table[next_state][next_action] # the only difference from Q learning
|
||||
self.Q_table[state][action] += self.lr * (Q_target - Q_predict)
|
||||
def save_model(self,path):
|
||||
import dill
|
||||
from pathlib import Path
|
||||
# create path
|
||||
Path(path).mkdir(parents=True, exist_ok=True)
|
||||
torch.save(
|
||||
obj=self.Q,
|
||||
f=path+"sarsa_model.pkl",
|
||||
obj=self.Q_table_table,
|
||||
f=path+"checkpoint.pkl",
|
||||
pickle_module=dill
|
||||
)
|
||||
def load(self, path):
|
||||
'''从文件中读取数据到 Q表格
|
||||
'''
|
||||
print("Model saved!")
|
||||
def load_model(self, path):
|
||||
import dill
|
||||
self.Q =torch.load(f=path+'sarsa_model.pkl',pickle_module=dill)
|
||||
self.Q_table_table =torch.load(f=path+'checkpoint.pkl',pickle_module=dill)
|
||||
print("Mode loaded!")
|
||||
Reference in New Issue
Block a user