hot update PG
This commit is contained in:
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2022-08-24 11:27:01
|
||||
LastEditTime: 2022-08-25 14:59:15
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -18,136 +18,102 @@ sys.path.append(parent_path) # add path to system path
|
||||
import gym
|
||||
import datetime
|
||||
import argparse
|
||||
from envs.gridworld_env import CliffWalkingWapper,FrozenLakeWapper
|
||||
from envs.gridworld_env import FrozenLakeWapper
|
||||
from envs.wrappers import CliffWalkingWapper
|
||||
from envs.register import register_env
|
||||
from qlearning import QLearning
|
||||
from common.utils import plot_rewards,save_args,all_seed
|
||||
from common.utils import save_results,make_dir
|
||||
|
||||
def get_args():
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='Q-learning',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CliffWalking-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=400,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--gamma',default=0.90,type=float,help="discounted factor")
|
||||
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
|
||||
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
|
||||
parser.add_argument('--epsilon_decay',default=300,type=int,help="decay rate of epsilon")
|
||||
parser.add_argument('--lr',default=0.1,type=float,help="learning rate")
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--seed',default=10,type=int,help="seed")
|
||||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
|
||||
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
|
||||
}
|
||||
args = {**vars(args),**default_args} # type(dict)
|
||||
return args
|
||||
def env_agent_config(cfg):
|
||||
''' create env and agent
|
||||
'''
|
||||
if cfg['env_name'] == 'CliffWalking-v0':
|
||||
env = gym.make(cfg['env_name'])
|
||||
env = CliffWalkingWapper(env)
|
||||
if cfg['env_name'] == 'FrozenLake-v1':
|
||||
env = gym.make(cfg['env_name'],is_slippery=False)
|
||||
if cfg['seed'] !=0: # set random seed
|
||||
all_seed(env,seed=cfg["seed"])
|
||||
n_states = env.observation_space.n # state dimension
|
||||
n_actions = env.action_space.n # action dimension
|
||||
print(f"n_states: {n_states}, n_actions: {n_actions}")
|
||||
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||||
agent = QLearning(cfg)
|
||||
return env,agent
|
||||
|
||||
def main(cfg,env,agent,tag = 'train'):
|
||||
print(f"Start {tag}ing!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # 记录奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录每个回合的奖励
|
||||
state = env.reset() # 重置环境,即开始新的回合
|
||||
while True:
|
||||
if tag == 'train':action = agent.sample_action(state) # 根据算法采样一个动作
|
||||
else: agent.predict_action(state)
|
||||
next_state, reward, done, _ = env.step(action) # 与环境进行一次动作交互
|
||||
if tag == 'train':agent.update(state, action, reward, next_state, done) # Q学习算法更新
|
||||
state = next_state # 更新状态
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.1f},Epsilon:{agent.epsilon}")
|
||||
print(f"Finish {tag}ing!")
|
||||
return {"rewards":rewards}
|
||||
|
||||
def train(cfg,env,agent):
|
||||
print("Start training!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
for i_ep in range(cfg['train_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
while True:
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, done, _ = env.step(action) # update env and return transitions
|
||||
agent.update(state, action, reward, next_state, done) # update agent
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
if (i_ep+1)%10==0:
|
||||
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}, Steps:{ep_step}, Epislon: {agent.epsilon:.3f}')
|
||||
print("Finish training!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
def test(cfg,env,agent):
|
||||
print("Start testing!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
for i_ep in range(cfg['test_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
while True:
|
||||
action = agent.predict_action(state) # predict action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
print(f"Episode: {i_ep+1}/{cfg['test_eps']}, Steps:{ep_step}, Reward: {ep_reward:.2f}")
|
||||
print("Finish testing!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
from common.utils import all_seed
|
||||
from common.launcher import Launcher
|
||||
|
||||
class Main(Launcher):
|
||||
def get_args(self):
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='Q-learning',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CliffWalking-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=400,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--gamma',default=0.90,type=float,help="discounted factor")
|
||||
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
|
||||
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
|
||||
parser.add_argument('--epsilon_decay',default=300,type=int,help="decay rate of epsilon")
|
||||
parser.add_argument('--lr',default=0.1,type=float,help="learning rate")
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--seed',default=10,type=int,help="seed")
|
||||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
|
||||
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
|
||||
}
|
||||
args = {**vars(args),**default_args} # type(dict)
|
||||
return args
|
||||
def env_agent_config(self,cfg):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg['env_name'])
|
||||
env = gym.make(cfg['env_name'])
|
||||
if cfg['env_name'] == 'CliffWalking-v0':
|
||||
env = CliffWalkingWapper(env)
|
||||
if cfg['seed'] !=0: # set random seed
|
||||
all_seed(env,seed=cfg["seed"])
|
||||
n_states = env.observation_space.n # state dimension
|
||||
n_actions = env.action_space.n # action dimension
|
||||
print(f"n_states: {n_states}, n_actions: {n_actions}")
|
||||
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||||
agent = QLearning(cfg)
|
||||
return env,agent
|
||||
def train(self,cfg,env,agent):
|
||||
print("Start training!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
for i_ep in range(cfg['train_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
while True:
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, done, _ = env.step(action) # update env and return transitions
|
||||
agent.update(state, action, reward, next_state, done) # update agent
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
if (i_ep+1)%10==0:
|
||||
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}, Steps:{ep_step}, Epislon: {agent.epsilon:.3f}')
|
||||
print("Finish training!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
def test(self,cfg,env,agent):
|
||||
print("Start testing!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
for i_ep in range(cfg['test_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
while True:
|
||||
action = agent.predict_action(state) # predict action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
print(f"Episode: {i_ep+1}/{cfg['test_eps']}, Steps:{ep_step}, Reward: {ep_reward:.2f}")
|
||||
print("Finish testing!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
# training
|
||||
env, agent = env_agent_config(cfg)
|
||||
res_dic = train(cfg, env, agent)
|
||||
save_args(cfg,path = cfg['result_path']) # save parameters
|
||||
agent.save_model(path = cfg['model_path']) # save models
|
||||
save_results(res_dic, tag = 'train', path = cfg['result_path']) # save results
|
||||
plot_rewards(res_dic['rewards'], cfg, path = cfg['result_path'],tag = "train") # plot results
|
||||
# testing
|
||||
env, agent = env_agent_config(cfg) # create new env for testing, sometimes can ignore this step
|
||||
agent.load_model(path = cfg['model_path']) # load model
|
||||
res_dic = test(cfg, env, agent)
|
||||
save_results(res_dic, tag='test',
|
||||
path = cfg['result_path'])
|
||||
plot_rewards(res_dic['rewards'], cfg, path = cfg['result_path'],tag = "test")
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 22 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 53 KiB |
@@ -1,801 +0,0 @@
|
||||
episodes,rewards,steps
|
||||
0,0.0,20
|
||||
1,0.0,14
|
||||
2,0.0,13
|
||||
3,0.0,9
|
||||
4,0.0,10
|
||||
5,0.0,6
|
||||
6,0.0,11
|
||||
7,0.0,6
|
||||
8,0.0,3
|
||||
9,0.0,9
|
||||
10,0.0,11
|
||||
11,0.0,22
|
||||
12,0.0,5
|
||||
13,0.0,16
|
||||
14,0.0,4
|
||||
15,0.0,9
|
||||
16,0.0,18
|
||||
17,0.0,2
|
||||
18,0.0,4
|
||||
19,0.0,8
|
||||
20,0.0,7
|
||||
21,0.0,4
|
||||
22,0.0,22
|
||||
23,0.0,15
|
||||
24,0.0,5
|
||||
25,0.0,16
|
||||
26,0.0,7
|
||||
27,0.0,19
|
||||
28,0.0,22
|
||||
29,0.0,16
|
||||
30,0.0,11
|
||||
31,0.0,22
|
||||
32,0.0,28
|
||||
33,0.0,23
|
||||
34,0.0,4
|
||||
35,0.0,11
|
||||
36,0.0,8
|
||||
37,0.0,15
|
||||
38,0.0,5
|
||||
39,0.0,7
|
||||
40,0.0,9
|
||||
41,0.0,4
|
||||
42,0.0,3
|
||||
43,0.0,6
|
||||
44,0.0,41
|
||||
45,0.0,9
|
||||
46,0.0,23
|
||||
47,0.0,3
|
||||
48,1.0,38
|
||||
49,0.0,29
|
||||
50,0.0,17
|
||||
51,0.0,4
|
||||
52,0.0,2
|
||||
53,0.0,25
|
||||
54,0.0,6
|
||||
55,0.0,2
|
||||
56,0.0,30
|
||||
57,0.0,6
|
||||
58,0.0,7
|
||||
59,0.0,11
|
||||
60,0.0,9
|
||||
61,0.0,8
|
||||
62,0.0,23
|
||||
63,0.0,10
|
||||
64,0.0,3
|
||||
65,0.0,5
|
||||
66,0.0,7
|
||||
67,0.0,18
|
||||
68,0.0,8
|
||||
69,0.0,26
|
||||
70,0.0,6
|
||||
71,0.0,14
|
||||
72,0.0,4
|
||||
73,0.0,25
|
||||
74,0.0,21
|
||||
75,0.0,13
|
||||
76,0.0,4
|
||||
77,0.0,29
|
||||
78,0.0,21
|
||||
79,0.0,6
|
||||
80,0.0,6
|
||||
81,0.0,11
|
||||
82,0.0,21
|
||||
83,0.0,9
|
||||
84,0.0,9
|
||||
85,0.0,7
|
||||
86,0.0,48
|
||||
87,0.0,23
|
||||
88,0.0,100
|
||||
89,0.0,60
|
||||
90,0.0,7
|
||||
91,0.0,10
|
||||
92,0.0,24
|
||||
93,0.0,4
|
||||
94,0.0,7
|
||||
95,0.0,17
|
||||
96,0.0,87
|
||||
97,0.0,28
|
||||
98,0.0,7
|
||||
99,0.0,5
|
||||
100,0.0,12
|
||||
101,0.0,14
|
||||
102,0.0,6
|
||||
103,0.0,13
|
||||
104,0.0,93
|
||||
105,0.0,4
|
||||
106,0.0,50
|
||||
107,0.0,8
|
||||
108,0.0,12
|
||||
109,0.0,43
|
||||
110,0.0,30
|
||||
111,0.0,15
|
||||
112,0.0,19
|
||||
113,0.0,100
|
||||
114,0.0,82
|
||||
115,0.0,40
|
||||
116,0.0,88
|
||||
117,0.0,19
|
||||
118,0.0,30
|
||||
119,0.0,27
|
||||
120,0.0,5
|
||||
121,0.0,87
|
||||
122,0.0,9
|
||||
123,0.0,64
|
||||
124,0.0,27
|
||||
125,0.0,68
|
||||
126,0.0,81
|
||||
127,0.0,86
|
||||
128,0.0,100
|
||||
129,0.0,100
|
||||
130,0.0,27
|
||||
131,0.0,41
|
||||
132,0.0,70
|
||||
133,0.0,27
|
||||
134,0.0,6
|
||||
135,0.0,18
|
||||
136,0.0,38
|
||||
137,0.0,26
|
||||
138,0.0,36
|
||||
139,0.0,3
|
||||
140,0.0,61
|
||||
141,0.0,100
|
||||
142,0.0,4
|
||||
143,0.0,39
|
||||
144,0.0,18
|
||||
145,0.0,33
|
||||
146,0.0,29
|
||||
147,0.0,49
|
||||
148,0.0,88
|
||||
149,0.0,22
|
||||
150,0.0,65
|
||||
151,0.0,36
|
||||
152,0.0,30
|
||||
153,0.0,58
|
||||
154,0.0,43
|
||||
155,0.0,53
|
||||
156,0.0,43
|
||||
157,0.0,13
|
||||
158,0.0,8
|
||||
159,0.0,39
|
||||
160,0.0,29
|
||||
161,0.0,26
|
||||
162,0.0,60
|
||||
163,0.0,100
|
||||
164,0.0,31
|
||||
165,0.0,22
|
||||
166,0.0,100
|
||||
167,0.0,46
|
||||
168,0.0,23
|
||||
169,0.0,54
|
||||
170,0.0,8
|
||||
171,0.0,58
|
||||
172,0.0,3
|
||||
173,0.0,47
|
||||
174,0.0,16
|
||||
175,0.0,21
|
||||
176,0.0,44
|
||||
177,0.0,29
|
||||
178,0.0,100
|
||||
179,0.0,100
|
||||
180,0.0,62
|
||||
181,0.0,83
|
||||
182,0.0,26
|
||||
183,0.0,24
|
||||
184,0.0,10
|
||||
185,0.0,12
|
||||
186,0.0,40
|
||||
187,0.0,25
|
||||
188,0.0,18
|
||||
189,0.0,60
|
||||
190,0.0,100
|
||||
191,0.0,100
|
||||
192,0.0,24
|
||||
193,0.0,56
|
||||
194,0.0,71
|
||||
195,0.0,19
|
||||
196,0.0,100
|
||||
197,0.0,44
|
||||
198,0.0,41
|
||||
199,0.0,41
|
||||
200,0.0,60
|
||||
201,0.0,31
|
||||
202,0.0,34
|
||||
203,0.0,35
|
||||
204,0.0,59
|
||||
205,0.0,51
|
||||
206,0.0,100
|
||||
207,0.0,100
|
||||
208,0.0,100
|
||||
209,0.0,100
|
||||
210,0.0,37
|
||||
211,0.0,68
|
||||
212,0.0,40
|
||||
213,0.0,17
|
||||
214,0.0,79
|
||||
215,0.0,100
|
||||
216,0.0,26
|
||||
217,0.0,61
|
||||
218,0.0,25
|
||||
219,0.0,18
|
||||
220,0.0,27
|
||||
221,0.0,13
|
||||
222,0.0,100
|
||||
223,0.0,87
|
||||
224,0.0,100
|
||||
225,0.0,92
|
||||
226,0.0,100
|
||||
227,0.0,8
|
||||
228,0.0,100
|
||||
229,0.0,64
|
||||
230,0.0,17
|
||||
231,0.0,82
|
||||
232,0.0,100
|
||||
233,0.0,94
|
||||
234,0.0,7
|
||||
235,0.0,36
|
||||
236,0.0,100
|
||||
237,0.0,56
|
||||
238,0.0,17
|
||||
239,0.0,100
|
||||
240,0.0,83
|
||||
241,0.0,100
|
||||
242,0.0,100
|
||||
243,0.0,43
|
||||
244,0.0,87
|
||||
245,0.0,42
|
||||
246,0.0,80
|
||||
247,0.0,54
|
||||
248,0.0,82
|
||||
249,0.0,97
|
||||
250,0.0,65
|
||||
251,0.0,83
|
||||
252,0.0,100
|
||||
253,0.0,59
|
||||
254,0.0,100
|
||||
255,0.0,78
|
||||
256,0.0,100
|
||||
257,0.0,100
|
||||
258,0.0,43
|
||||
259,0.0,80
|
||||
260,0.0,100
|
||||
261,0.0,70
|
||||
262,0.0,94
|
||||
263,0.0,100
|
||||
264,0.0,100
|
||||
265,0.0,37
|
||||
266,0.0,11
|
||||
267,0.0,31
|
||||
268,0.0,100
|
||||
269,0.0,34
|
||||
270,0.0,32
|
||||
271,0.0,58
|
||||
272,0.0,38
|
||||
273,0.0,28
|
||||
274,0.0,100
|
||||
275,0.0,59
|
||||
276,0.0,100
|
||||
277,0.0,82
|
||||
278,0.0,51
|
||||
279,0.0,25
|
||||
280,0.0,73
|
||||
281,0.0,56
|
||||
282,0.0,55
|
||||
283,0.0,38
|
||||
284,0.0,100
|
||||
285,0.0,100
|
||||
286,0.0,92
|
||||
287,0.0,100
|
||||
288,0.0,100
|
||||
289,0.0,100
|
||||
290,0.0,37
|
||||
291,0.0,100
|
||||
292,0.0,66
|
||||
293,0.0,24
|
||||
294,0.0,17
|
||||
295,0.0,100
|
||||
296,0.0,59
|
||||
297,0.0,25
|
||||
298,0.0,73
|
||||
299,0.0,100
|
||||
300,0.0,29
|
||||
301,0.0,100
|
||||
302,0.0,72
|
||||
303,0.0,6
|
||||
304,1.0,57
|
||||
305,0.0,47
|
||||
306,0.0,48
|
||||
307,0.0,13
|
||||
308,0.0,100
|
||||
309,0.0,38
|
||||
310,0.0,100
|
||||
311,0.0,20
|
||||
312,0.0,100
|
||||
313,0.0,100
|
||||
314,0.0,5
|
||||
315,0.0,39
|
||||
316,0.0,11
|
||||
317,0.0,83
|
||||
318,0.0,42
|
||||
319,0.0,100
|
||||
320,0.0,99
|
||||
321,0.0,83
|
||||
322,0.0,28
|
||||
323,0.0,46
|
||||
324,0.0,100
|
||||
325,0.0,100
|
||||
326,0.0,62
|
||||
327,0.0,100
|
||||
328,0.0,23
|
||||
329,0.0,91
|
||||
330,0.0,53
|
||||
331,0.0,19
|
||||
332,0.0,26
|
||||
333,0.0,93
|
||||
334,0.0,38
|
||||
335,0.0,22
|
||||
336,0.0,43
|
||||
337,0.0,100
|
||||
338,0.0,90
|
||||
339,0.0,18
|
||||
340,0.0,45
|
||||
341,0.0,65
|
||||
342,1.0,22
|
||||
343,0.0,100
|
||||
344,1.0,15
|
||||
345,1.0,72
|
||||
346,0.0,5
|
||||
347,1.0,6
|
||||
348,1.0,6
|
||||
349,1.0,9
|
||||
350,1.0,8
|
||||
351,1.0,9
|
||||
352,1.0,8
|
||||
353,1.0,6
|
||||
354,1.0,6
|
||||
355,1.0,10
|
||||
356,1.0,6
|
||||
357,0.0,5
|
||||
358,0.0,3
|
||||
359,1.0,6
|
||||
360,1.0,6
|
||||
361,1.0,6
|
||||
362,1.0,6
|
||||
363,1.0,8
|
||||
364,1.0,6
|
||||
365,1.0,8
|
||||
366,1.0,6
|
||||
367,1.0,6
|
||||
368,1.0,8
|
||||
369,1.0,6
|
||||
370,1.0,6
|
||||
371,0.0,5
|
||||
372,1.0,6
|
||||
373,0.0,6
|
||||
374,1.0,6
|
||||
375,1.0,12
|
||||
376,1.0,6
|
||||
377,1.0,6
|
||||
378,1.0,9
|
||||
379,1.0,6
|
||||
380,1.0,6
|
||||
381,0.0,2
|
||||
382,0.0,3
|
||||
383,0.0,2
|
||||
384,0.0,4
|
||||
385,0.0,3
|
||||
386,1.0,7
|
||||
387,1.0,6
|
||||
388,1.0,6
|
||||
389,1.0,8
|
||||
390,1.0,9
|
||||
391,1.0,8
|
||||
392,1.0,8
|
||||
393,1.0,6
|
||||
394,1.0,6
|
||||
395,1.0,7
|
||||
396,1.0,6
|
||||
397,0.0,5
|
||||
398,0.0,5
|
||||
399,1.0,10
|
||||
400,1.0,6
|
||||
401,0.0,3
|
||||
402,1.0,6
|
||||
403,1.0,7
|
||||
404,1.0,6
|
||||
405,1.0,6
|
||||
406,1.0,6
|
||||
407,1.0,6
|
||||
408,1.0,6
|
||||
409,1.0,6
|
||||
410,1.0,6
|
||||
411,0.0,5
|
||||
412,1.0,6
|
||||
413,1.0,6
|
||||
414,0.0,2
|
||||
415,1.0,6
|
||||
416,1.0,6
|
||||
417,1.0,6
|
||||
418,1.0,6
|
||||
419,1.0,6
|
||||
420,1.0,8
|
||||
421,1.0,6
|
||||
422,1.0,6
|
||||
423,1.0,6
|
||||
424,1.0,6
|
||||
425,1.0,7
|
||||
426,0.0,5
|
||||
427,1.0,6
|
||||
428,1.0,6
|
||||
429,1.0,6
|
||||
430,1.0,8
|
||||
431,1.0,6
|
||||
432,1.0,6
|
||||
433,1.0,6
|
||||
434,1.0,6
|
||||
435,0.0,2
|
||||
436,1.0,8
|
||||
437,1.0,7
|
||||
438,1.0,6
|
||||
439,1.0,7
|
||||
440,1.0,6
|
||||
441,1.0,6
|
||||
442,0.0,3
|
||||
443,0.0,4
|
||||
444,1.0,6
|
||||
445,1.0,6
|
||||
446,1.0,7
|
||||
447,1.0,6
|
||||
448,1.0,6
|
||||
449,1.0,6
|
||||
450,1.0,6
|
||||
451,1.0,6
|
||||
452,1.0,6
|
||||
453,1.0,8
|
||||
454,1.0,6
|
||||
455,1.0,6
|
||||
456,1.0,6
|
||||
457,1.0,6
|
||||
458,1.0,6
|
||||
459,1.0,7
|
||||
460,1.0,8
|
||||
461,1.0,6
|
||||
462,1.0,7
|
||||
463,1.0,6
|
||||
464,1.0,6
|
||||
465,1.0,6
|
||||
466,1.0,6
|
||||
467,1.0,8
|
||||
468,1.0,6
|
||||
469,1.0,6
|
||||
470,1.0,8
|
||||
471,1.0,6
|
||||
472,1.0,11
|
||||
473,1.0,6
|
||||
474,1.0,6
|
||||
475,1.0,6
|
||||
476,1.0,8
|
||||
477,0.0,2
|
||||
478,1.0,7
|
||||
479,1.0,6
|
||||
480,1.0,6
|
||||
481,1.0,7
|
||||
482,1.0,6
|
||||
483,1.0,6
|
||||
484,1.0,6
|
||||
485,1.0,6
|
||||
486,0.0,3
|
||||
487,1.0,7
|
||||
488,1.0,6
|
||||
489,1.0,6
|
||||
490,1.0,6
|
||||
491,0.0,3
|
||||
492,1.0,6
|
||||
493,1.0,7
|
||||
494,1.0,12
|
||||
495,1.0,6
|
||||
496,0.0,9
|
||||
497,1.0,6
|
||||
498,1.0,6
|
||||
499,0.0,8
|
||||
500,1.0,6
|
||||
501,0.0,3
|
||||
502,0.0,5
|
||||
503,0.0,3
|
||||
504,1.0,6
|
||||
505,1.0,6
|
||||
506,1.0,6
|
||||
507,1.0,6
|
||||
508,1.0,6
|
||||
509,1.0,6
|
||||
510,1.0,6
|
||||
511,1.0,6
|
||||
512,1.0,6
|
||||
513,1.0,6
|
||||
514,0.0,2
|
||||
515,1.0,7
|
||||
516,1.0,6
|
||||
517,1.0,6
|
||||
518,1.0,6
|
||||
519,1.0,6
|
||||
520,1.0,6
|
||||
521,1.0,7
|
||||
522,0.0,4
|
||||
523,1.0,6
|
||||
524,0.0,5
|
||||
525,1.0,6
|
||||
526,1.0,6
|
||||
527,1.0,6
|
||||
528,1.0,6
|
||||
529,0.0,3
|
||||
530,1.0,6
|
||||
531,1.0,6
|
||||
532,1.0,6
|
||||
533,1.0,7
|
||||
534,1.0,8
|
||||
535,1.0,6
|
||||
536,1.0,6
|
||||
537,1.0,6
|
||||
538,1.0,6
|
||||
539,1.0,7
|
||||
540,1.0,7
|
||||
541,1.0,7
|
||||
542,1.0,8
|
||||
543,1.0,6
|
||||
544,1.0,10
|
||||
545,1.0,6
|
||||
546,1.0,6
|
||||
547,1.0,6
|
||||
548,1.0,8
|
||||
549,1.0,6
|
||||
550,1.0,6
|
||||
551,1.0,8
|
||||
552,1.0,6
|
||||
553,1.0,7
|
||||
554,1.0,6
|
||||
555,1.0,7
|
||||
556,1.0,6
|
||||
557,1.0,6
|
||||
558,1.0,7
|
||||
559,1.0,7
|
||||
560,1.0,7
|
||||
561,1.0,6
|
||||
562,1.0,6
|
||||
563,1.0,6
|
||||
564,1.0,6
|
||||
565,1.0,6
|
||||
566,1.0,6
|
||||
567,1.0,6
|
||||
568,1.0,7
|
||||
569,0.0,4
|
||||
570,1.0,8
|
||||
571,1.0,8
|
||||
572,1.0,7
|
||||
573,1.0,6
|
||||
574,1.0,8
|
||||
575,1.0,6
|
||||
576,1.0,6
|
||||
577,1.0,7
|
||||
578,1.0,6
|
||||
579,1.0,6
|
||||
580,1.0,8
|
||||
581,1.0,7
|
||||
582,1.0,6
|
||||
583,1.0,6
|
||||
584,0.0,3
|
||||
585,1.0,11
|
||||
586,1.0,6
|
||||
587,1.0,8
|
||||
588,0.0,2
|
||||
589,1.0,6
|
||||
590,1.0,6
|
||||
591,1.0,6
|
||||
592,1.0,6
|
||||
593,1.0,8
|
||||
594,1.0,6
|
||||
595,1.0,7
|
||||
596,1.0,6
|
||||
597,1.0,7
|
||||
598,1.0,6
|
||||
599,1.0,8
|
||||
600,0.0,2
|
||||
601,1.0,6
|
||||
602,1.0,7
|
||||
603,1.0,6
|
||||
604,1.0,6
|
||||
605,1.0,10
|
||||
606,1.0,7
|
||||
607,1.0,6
|
||||
608,1.0,6
|
||||
609,1.0,6
|
||||
610,1.0,6
|
||||
611,1.0,6
|
||||
612,1.0,7
|
||||
613,0.0,4
|
||||
614,1.0,7
|
||||
615,1.0,6
|
||||
616,1.0,8
|
||||
617,0.0,3
|
||||
618,1.0,6
|
||||
619,1.0,6
|
||||
620,1.0,6
|
||||
621,1.0,6
|
||||
622,0.0,2
|
||||
623,1.0,6
|
||||
624,1.0,6
|
||||
625,1.0,6
|
||||
626,1.0,6
|
||||
627,1.0,6
|
||||
628,1.0,7
|
||||
629,1.0,6
|
||||
630,1.0,6
|
||||
631,1.0,7
|
||||
632,1.0,6
|
||||
633,1.0,6
|
||||
634,1.0,6
|
||||
635,1.0,6
|
||||
636,1.0,6
|
||||
637,1.0,6
|
||||
638,1.0,6
|
||||
639,1.0,8
|
||||
640,1.0,6
|
||||
641,1.0,8
|
||||
642,1.0,7
|
||||
643,1.0,6
|
||||
644,0.0,3
|
||||
645,1.0,6
|
||||
646,1.0,7
|
||||
647,1.0,6
|
||||
648,1.0,6
|
||||
649,1.0,6
|
||||
650,1.0,10
|
||||
651,1.0,6
|
||||
652,1.0,6
|
||||
653,1.0,6
|
||||
654,1.0,6
|
||||
655,1.0,10
|
||||
656,1.0,6
|
||||
657,1.0,8
|
||||
658,1.0,8
|
||||
659,1.0,7
|
||||
660,1.0,6
|
||||
661,0.0,5
|
||||
662,0.0,2
|
||||
663,1.0,8
|
||||
664,1.0,6
|
||||
665,1.0,10
|
||||
666,1.0,6
|
||||
667,1.0,8
|
||||
668,1.0,10
|
||||
669,1.0,6
|
||||
670,1.0,6
|
||||
671,1.0,6
|
||||
672,1.0,10
|
||||
673,1.0,6
|
||||
674,0.0,4
|
||||
675,1.0,6
|
||||
676,1.0,6
|
||||
677,1.0,6
|
||||
678,1.0,15
|
||||
679,1.0,6
|
||||
680,1.0,6
|
||||
681,1.0,6
|
||||
682,1.0,6
|
||||
683,1.0,6
|
||||
684,1.0,6
|
||||
685,1.0,8
|
||||
686,1.0,6
|
||||
687,1.0,7
|
||||
688,1.0,6
|
||||
689,1.0,6
|
||||
690,1.0,8
|
||||
691,1.0,6
|
||||
692,1.0,6
|
||||
693,1.0,8
|
||||
694,1.0,8
|
||||
695,1.0,6
|
||||
696,1.0,6
|
||||
697,1.0,6
|
||||
698,1.0,10
|
||||
699,1.0,6
|
||||
700,1.0,6
|
||||
701,1.0,6
|
||||
702,1.0,6
|
||||
703,1.0,6
|
||||
704,1.0,6
|
||||
705,1.0,6
|
||||
706,1.0,8
|
||||
707,1.0,8
|
||||
708,1.0,6
|
||||
709,1.0,6
|
||||
710,0.0,2
|
||||
711,1.0,6
|
||||
712,1.0,6
|
||||
713,1.0,6
|
||||
714,1.0,8
|
||||
715,1.0,6
|
||||
716,1.0,6
|
||||
717,1.0,6
|
||||
718,1.0,6
|
||||
719,1.0,6
|
||||
720,1.0,6
|
||||
721,1.0,6
|
||||
722,1.0,6
|
||||
723,1.0,6
|
||||
724,1.0,7
|
||||
725,0.0,3
|
||||
726,1.0,7
|
||||
727,1.0,6
|
||||
728,1.0,6
|
||||
729,1.0,6
|
||||
730,0.0,2
|
||||
731,1.0,6
|
||||
732,1.0,8
|
||||
733,1.0,6
|
||||
734,1.0,6
|
||||
735,1.0,6
|
||||
736,1.0,6
|
||||
737,1.0,9
|
||||
738,1.0,6
|
||||
739,1.0,6
|
||||
740,1.0,6
|
||||
741,1.0,6
|
||||
742,1.0,6
|
||||
743,1.0,6
|
||||
744,1.0,9
|
||||
745,1.0,7
|
||||
746,0.0,4
|
||||
747,1.0,6
|
||||
748,1.0,8
|
||||
749,1.0,11
|
||||
750,1.0,6
|
||||
751,1.0,6
|
||||
752,1.0,6
|
||||
753,1.0,6
|
||||
754,1.0,6
|
||||
755,1.0,8
|
||||
756,1.0,6
|
||||
757,1.0,6
|
||||
758,1.0,8
|
||||
759,1.0,7
|
||||
760,1.0,6
|
||||
761,1.0,8
|
||||
762,1.0,6
|
||||
763,0.0,5
|
||||
764,1.0,9
|
||||
765,1.0,8
|
||||
766,1.0,8
|
||||
767,1.0,6
|
||||
768,1.0,8
|
||||
769,1.0,8
|
||||
770,1.0,6
|
||||
771,0.0,5
|
||||
772,0.0,3
|
||||
773,0.0,2
|
||||
774,1.0,8
|
||||
775,1.0,6
|
||||
776,1.0,6
|
||||
777,1.0,6
|
||||
778,1.0,6
|
||||
779,1.0,6
|
||||
780,1.0,6
|
||||
781,1.0,6
|
||||
782,1.0,6
|
||||
783,1.0,6
|
||||
784,1.0,6
|
||||
785,1.0,6
|
||||
786,1.0,6
|
||||
787,1.0,6
|
||||
788,1.0,6
|
||||
789,0.0,2
|
||||
790,1.0,6
|
||||
791,0.0,4
|
||||
792,1.0,6
|
||||
793,1.0,6
|
||||
794,1.0,6
|
||||
795,1.0,6
|
||||
796,1.0,6
|
||||
797,1.0,8
|
||||
798,0.0,5
|
||||
799,1.0,6
|
||||
|
Binary file not shown.
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"algo_name": "Q-learning",
|
||||
"env_name": "FrozenLake-v1",
|
||||
"env_name": "FrozenLakeNoSlippery-v1",
|
||||
"train_eps": 800,
|
||||
"test_eps": 20,
|
||||
"gamma": 0.9,
|
||||
@@ -12,8 +12,8 @@
|
||||
"seed": 10,
|
||||
"show_fig": false,
|
||||
"save_fig": true,
|
||||
"result_path": "/Users/jj/Desktop/rl-tutorials/codes/QLearning/outputs/FrozenLake-v1/20220824-112735/results/",
|
||||
"model_path": "/Users/jj/Desktop/rl-tutorials/codes/QLearning/outputs/FrozenLake-v1/20220824-112735/models/",
|
||||
"result_path": "/Users/jj/Desktop/rl-tutorials/codes/QLearning/outputs/FrozenLakeNoSlippery-v1/20220825-114335/results/",
|
||||
"model_path": "/Users/jj/Desktop/rl-tutorials/codes/QLearning/outputs/FrozenLakeNoSlippery-v1/20220825-114335/models/",
|
||||
"n_states": 16,
|
||||
"n_actions": 4
|
||||
}
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 24 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 55 KiB |
@@ -0,0 +1,801 @@
|
||||
episodes,rewards,steps
|
||||
0,0.0,20
|
||||
1,0.0,14
|
||||
2,0.0,13
|
||||
3,0.0,9
|
||||
4,0.0,10
|
||||
5,0.0,6
|
||||
6,0.0,11
|
||||
7,0.0,6
|
||||
8,0.0,3
|
||||
9,0.0,9
|
||||
10,0.0,11
|
||||
11,0.0,22
|
||||
12,0.0,5
|
||||
13,0.0,16
|
||||
14,0.0,4
|
||||
15,0.0,9
|
||||
16,0.0,18
|
||||
17,0.0,2
|
||||
18,0.0,4
|
||||
19,0.0,8
|
||||
20,0.0,7
|
||||
21,0.0,4
|
||||
22,0.0,22
|
||||
23,0.0,15
|
||||
24,0.0,5
|
||||
25,0.0,16
|
||||
26,0.0,7
|
||||
27,0.0,19
|
||||
28,0.0,22
|
||||
29,0.0,16
|
||||
30,0.0,11
|
||||
31,0.0,22
|
||||
32,0.0,28
|
||||
33,0.0,23
|
||||
34,0.0,4
|
||||
35,0.0,11
|
||||
36,0.0,8
|
||||
37,0.0,15
|
||||
38,0.0,5
|
||||
39,0.0,7
|
||||
40,0.0,9
|
||||
41,0.0,4
|
||||
42,0.0,3
|
||||
43,0.0,6
|
||||
44,0.0,41
|
||||
45,0.0,9
|
||||
46,0.0,23
|
||||
47,0.0,3
|
||||
48,1.0,38
|
||||
49,0.0,29
|
||||
50,0.0,17
|
||||
51,0.0,4
|
||||
52,0.0,2
|
||||
53,0.0,25
|
||||
54,0.0,6
|
||||
55,0.0,2
|
||||
56,0.0,30
|
||||
57,0.0,6
|
||||
58,0.0,7
|
||||
59,0.0,11
|
||||
60,0.0,9
|
||||
61,0.0,8
|
||||
62,0.0,23
|
||||
63,0.0,10
|
||||
64,0.0,3
|
||||
65,0.0,5
|
||||
66,0.0,7
|
||||
67,0.0,18
|
||||
68,0.0,8
|
||||
69,0.0,26
|
||||
70,0.0,6
|
||||
71,0.0,14
|
||||
72,0.0,4
|
||||
73,0.0,25
|
||||
74,0.0,21
|
||||
75,0.0,13
|
||||
76,0.0,4
|
||||
77,0.0,29
|
||||
78,0.0,21
|
||||
79,0.0,6
|
||||
80,0.0,6
|
||||
81,0.0,11
|
||||
82,0.0,21
|
||||
83,0.0,9
|
||||
84,0.0,9
|
||||
85,0.0,7
|
||||
86,0.0,48
|
||||
87,0.0,23
|
||||
88,0.0,160
|
||||
89,0.0,7
|
||||
90,0.0,10
|
||||
91,0.0,24
|
||||
92,0.0,4
|
||||
93,0.0,7
|
||||
94,0.0,17
|
||||
95,0.0,87
|
||||
96,0.0,28
|
||||
97,0.0,7
|
||||
98,0.0,5
|
||||
99,0.0,12
|
||||
100,0.0,14
|
||||
101,0.0,6
|
||||
102,0.0,13
|
||||
103,0.0,93
|
||||
104,0.0,4
|
||||
105,0.0,50
|
||||
106,0.0,8
|
||||
107,0.0,12
|
||||
108,0.0,43
|
||||
109,0.0,30
|
||||
110,0.0,15
|
||||
111,0.0,19
|
||||
112,0.0,182
|
||||
113,0.0,40
|
||||
114,0.0,88
|
||||
115,0.0,19
|
||||
116,0.0,30
|
||||
117,0.0,27
|
||||
118,0.0,5
|
||||
119,0.0,87
|
||||
120,0.0,9
|
||||
121,0.0,64
|
||||
122,0.0,27
|
||||
123,0.0,68
|
||||
124,0.0,81
|
||||
125,0.0,86
|
||||
126,0.0,227
|
||||
127,0.0,41
|
||||
128,0.0,70
|
||||
129,0.0,27
|
||||
130,0.0,6
|
||||
131,0.0,18
|
||||
132,0.0,38
|
||||
133,0.0,26
|
||||
134,0.0,36
|
||||
135,0.0,3
|
||||
136,0.0,61
|
||||
137,0.0,105
|
||||
138,0.0,38
|
||||
139,0.0,18
|
||||
140,0.0,33
|
||||
141,0.0,29
|
||||
142,0.0,49
|
||||
143,0.0,88
|
||||
144,0.0,22
|
||||
145,0.0,65
|
||||
146,0.0,36
|
||||
147,0.0,30
|
||||
148,0.0,58
|
||||
149,0.0,43
|
||||
150,0.0,53
|
||||
151,0.0,43
|
||||
152,0.0,13
|
||||
153,0.0,8
|
||||
154,0.0,39
|
||||
155,0.0,29
|
||||
156,0.0,26
|
||||
157,0.0,60
|
||||
158,0.0,153
|
||||
159,0.0,116
|
||||
160,0.0,53
|
||||
161,0.0,54
|
||||
162,0.0,8
|
||||
163,0.0,58
|
||||
164,0.0,3
|
||||
165,0.0,47
|
||||
166,0.0,16
|
||||
167,0.0,21
|
||||
168,0.0,44
|
||||
169,0.0,29
|
||||
170,0.0,104
|
||||
171,0.0,158
|
||||
172,0.0,83
|
||||
173,0.0,26
|
||||
174,0.0,24
|
||||
175,0.0,10
|
||||
176,0.0,12
|
||||
177,0.0,40
|
||||
178,0.0,25
|
||||
179,0.0,18
|
||||
180,0.0,60
|
||||
181,0.0,203
|
||||
182,0.0,23
|
||||
183,0.0,54
|
||||
184,0.0,71
|
||||
185,0.0,19
|
||||
186,0.0,118
|
||||
187,0.0,26
|
||||
188,0.0,41
|
||||
189,0.0,41
|
||||
190,0.0,60
|
||||
191,0.0,31
|
||||
192,0.0,34
|
||||
193,0.0,35
|
||||
194,0.0,59
|
||||
195,0.0,51
|
||||
196,0.0,426
|
||||
197,0.0,79
|
||||
198,0.0,40
|
||||
199,0.0,17
|
||||
200,0.0,79
|
||||
201,0.0,126
|
||||
202,0.0,61
|
||||
203,0.0,25
|
||||
204,0.0,18
|
||||
205,0.0,27
|
||||
206,0.0,13
|
||||
207,0.0,187
|
||||
208,0.0,160
|
||||
209,0.0,32
|
||||
210,0.0,108
|
||||
211,0.0,164
|
||||
212,0.0,17
|
||||
213,0.0,82
|
||||
214,0.0,194
|
||||
215,0.0,7
|
||||
216,0.0,36
|
||||
217,0.0,156
|
||||
218,0.0,17
|
||||
219,0.0,183
|
||||
220,0.0,243
|
||||
221,0.0,87
|
||||
222,0.0,42
|
||||
223,0.0,80
|
||||
224,0.0,54
|
||||
225,0.0,82
|
||||
226,0.0,97
|
||||
227,0.0,65
|
||||
228,0.0,83
|
||||
229,0.0,159
|
||||
230,0.0,178
|
||||
231,0.0,104
|
||||
232,0.0,21
|
||||
233,0.0,118
|
||||
234,0.0,80
|
||||
235,0.0,170
|
||||
236,0.0,94
|
||||
237,0.0,235
|
||||
238,0.0,13
|
||||
239,0.0,31
|
||||
240,0.0,134
|
||||
241,0.0,32
|
||||
242,0.0,58
|
||||
243,0.0,38
|
||||
244,0.0,28
|
||||
245,0.0,159
|
||||
246,0.0,182
|
||||
247,0.0,51
|
||||
248,0.0,25
|
||||
249,0.0,73
|
||||
250,0.0,56
|
||||
251,0.0,55
|
||||
252,0.0,38
|
||||
253,0.0,292
|
||||
254,0.0,319
|
||||
255,0.0,100
|
||||
256,0.0,84
|
||||
257,0.0,24
|
||||
258,0.0,17
|
||||
259,0.0,159
|
||||
260,0.0,25
|
||||
261,0.0,73
|
||||
262,0.0,130
|
||||
263,0.0,111
|
||||
264,0.0,65
|
||||
265,1.0,58
|
||||
266,0.0,47
|
||||
267,0.0,48
|
||||
268,0.0,13
|
||||
269,0.0,100
|
||||
270,0.0,38
|
||||
271,0.0,111
|
||||
272,0.0,226
|
||||
273,0.0,38
|
||||
274,0.0,83
|
||||
275,0.0,42
|
||||
276,0.0,199
|
||||
277,0.0,83
|
||||
278,0.0,28
|
||||
279,0.0,46
|
||||
280,0.0,262
|
||||
281,0.0,123
|
||||
282,0.0,91
|
||||
283,0.0,53
|
||||
284,0.0,19
|
||||
285,0.0,26
|
||||
286,0.0,93
|
||||
287,0.0,38
|
||||
288,0.0,22
|
||||
289,0.0,43
|
||||
290,0.0,163
|
||||
291,0.0,25
|
||||
292,0.0,59
|
||||
293,0.0,71
|
||||
294,0.0,20
|
||||
295,0.0,115
|
||||
296,0.0,248
|
||||
297,0.0,66
|
||||
298,0.0,58
|
||||
299,0.0,129
|
||||
300,0.0,122
|
||||
301,0.0,47
|
||||
302,0.0,60
|
||||
303,0.0,79
|
||||
304,1.0,137
|
||||
305,0.0,27
|
||||
306,1.0,93
|
||||
307,0.0,46
|
||||
308,1.0,83
|
||||
309,1.0,8
|
||||
310,1.0,6
|
||||
311,1.0,6
|
||||
312,0.0,4
|
||||
313,1.0,6
|
||||
314,0.0,2
|
||||
315,1.0,6
|
||||
316,1.0,6
|
||||
317,1.0,6
|
||||
318,1.0,6
|
||||
319,1.0,8
|
||||
320,0.0,5
|
||||
321,1.0,6
|
||||
322,1.0,7
|
||||
323,0.0,5
|
||||
324,1.0,6
|
||||
325,1.0,6
|
||||
326,1.0,8
|
||||
327,1.0,6
|
||||
328,1.0,6
|
||||
329,1.0,6
|
||||
330,1.0,7
|
||||
331,1.0,6
|
||||
332,1.0,6
|
||||
333,0.0,3
|
||||
334,1.0,7
|
||||
335,0.0,4
|
||||
336,1.0,6
|
||||
337,1.0,6
|
||||
338,1.0,7
|
||||
339,1.0,6
|
||||
340,1.0,6
|
||||
341,1.0,7
|
||||
342,1.0,7
|
||||
343,1.0,7
|
||||
344,1.0,6
|
||||
345,1.0,6
|
||||
346,1.0,6
|
||||
347,1.0,6
|
||||
348,1.0,6
|
||||
349,1.0,6
|
||||
350,1.0,6
|
||||
351,1.0,7
|
||||
352,0.0,4
|
||||
353,1.0,8
|
||||
354,1.0,8
|
||||
355,1.0,7
|
||||
356,1.0,6
|
||||
357,1.0,8
|
||||
358,1.0,6
|
||||
359,1.0,6
|
||||
360,1.0,7
|
||||
361,1.0,6
|
||||
362,1.0,6
|
||||
363,1.0,8
|
||||
364,1.0,7
|
||||
365,1.0,6
|
||||
366,1.0,6
|
||||
367,0.0,3
|
||||
368,1.0,11
|
||||
369,1.0,6
|
||||
370,1.0,8
|
||||
371,0.0,2
|
||||
372,1.0,6
|
||||
373,1.0,6
|
||||
374,1.0,6
|
||||
375,1.0,6
|
||||
376,1.0,8
|
||||
377,1.0,6
|
||||
378,1.0,7
|
||||
379,1.0,6
|
||||
380,1.0,7
|
||||
381,1.0,6
|
||||
382,1.0,8
|
||||
383,0.0,2
|
||||
384,1.0,6
|
||||
385,1.0,7
|
||||
386,1.0,6
|
||||
387,1.0,6
|
||||
388,1.0,10
|
||||
389,1.0,7
|
||||
390,1.0,6
|
||||
391,1.0,6
|
||||
392,1.0,6
|
||||
393,1.0,6
|
||||
394,1.0,6
|
||||
395,1.0,7
|
||||
396,0.0,4
|
||||
397,1.0,7
|
||||
398,1.0,6
|
||||
399,1.0,8
|
||||
400,0.0,3
|
||||
401,1.0,6
|
||||
402,1.0,6
|
||||
403,1.0,6
|
||||
404,1.0,6
|
||||
405,0.0,2
|
||||
406,1.0,6
|
||||
407,1.0,6
|
||||
408,1.0,6
|
||||
409,1.0,6
|
||||
410,1.0,6
|
||||
411,1.0,7
|
||||
412,1.0,6
|
||||
413,1.0,6
|
||||
414,1.0,7
|
||||
415,1.0,6
|
||||
416,1.0,6
|
||||
417,1.0,6
|
||||
418,1.0,6
|
||||
419,1.0,6
|
||||
420,1.0,6
|
||||
421,1.0,6
|
||||
422,1.0,8
|
||||
423,1.0,6
|
||||
424,1.0,8
|
||||
425,1.0,7
|
||||
426,1.0,6
|
||||
427,0.0,3
|
||||
428,1.0,6
|
||||
429,1.0,7
|
||||
430,1.0,6
|
||||
431,1.0,6
|
||||
432,1.0,6
|
||||
433,1.0,10
|
||||
434,1.0,6
|
||||
435,1.0,6
|
||||
436,1.0,6
|
||||
437,1.0,6
|
||||
438,1.0,10
|
||||
439,1.0,6
|
||||
440,1.0,8
|
||||
441,1.0,8
|
||||
442,1.0,7
|
||||
443,1.0,6
|
||||
444,0.0,5
|
||||
445,0.0,2
|
||||
446,1.0,8
|
||||
447,1.0,6
|
||||
448,1.0,10
|
||||
449,1.0,6
|
||||
450,1.0,8
|
||||
451,1.0,10
|
||||
452,1.0,6
|
||||
453,1.0,6
|
||||
454,1.0,6
|
||||
455,1.0,10
|
||||
456,1.0,6
|
||||
457,0.0,4
|
||||
458,1.0,6
|
||||
459,1.0,6
|
||||
460,1.0,6
|
||||
461,1.0,15
|
||||
462,1.0,6
|
||||
463,1.0,6
|
||||
464,1.0,6
|
||||
465,1.0,6
|
||||
466,1.0,6
|
||||
467,1.0,6
|
||||
468,1.0,8
|
||||
469,1.0,6
|
||||
470,1.0,7
|
||||
471,1.0,6
|
||||
472,1.0,6
|
||||
473,1.0,8
|
||||
474,1.0,6
|
||||
475,1.0,6
|
||||
476,1.0,8
|
||||
477,1.0,8
|
||||
478,1.0,6
|
||||
479,1.0,6
|
||||
480,1.0,6
|
||||
481,1.0,10
|
||||
482,1.0,6
|
||||
483,1.0,6
|
||||
484,1.0,6
|
||||
485,1.0,6
|
||||
486,1.0,6
|
||||
487,1.0,6
|
||||
488,1.0,6
|
||||
489,1.0,8
|
||||
490,1.0,8
|
||||
491,1.0,6
|
||||
492,1.0,6
|
||||
493,0.0,2
|
||||
494,1.0,6
|
||||
495,1.0,6
|
||||
496,1.0,6
|
||||
497,1.0,8
|
||||
498,1.0,6
|
||||
499,1.0,6
|
||||
500,1.0,6
|
||||
501,1.0,6
|
||||
502,1.0,6
|
||||
503,1.0,6
|
||||
504,1.0,6
|
||||
505,1.0,6
|
||||
506,1.0,6
|
||||
507,1.0,7
|
||||
508,0.0,3
|
||||
509,1.0,7
|
||||
510,1.0,6
|
||||
511,1.0,6
|
||||
512,1.0,6
|
||||
513,0.0,2
|
||||
514,1.0,6
|
||||
515,1.0,8
|
||||
516,1.0,6
|
||||
517,1.0,6
|
||||
518,1.0,6
|
||||
519,1.0,6
|
||||
520,1.0,9
|
||||
521,1.0,6
|
||||
522,1.0,6
|
||||
523,1.0,6
|
||||
524,1.0,6
|
||||
525,1.0,6
|
||||
526,1.0,6
|
||||
527,1.0,9
|
||||
528,1.0,7
|
||||
529,0.0,4
|
||||
530,1.0,6
|
||||
531,1.0,8
|
||||
532,1.0,11
|
||||
533,1.0,6
|
||||
534,1.0,6
|
||||
535,1.0,6
|
||||
536,1.0,6
|
||||
537,1.0,6
|
||||
538,1.0,8
|
||||
539,1.0,6
|
||||
540,1.0,6
|
||||
541,1.0,8
|
||||
542,1.0,7
|
||||
543,1.0,6
|
||||
544,1.0,8
|
||||
545,1.0,6
|
||||
546,0.0,5
|
||||
547,1.0,9
|
||||
548,1.0,8
|
||||
549,1.0,8
|
||||
550,1.0,6
|
||||
551,1.0,8
|
||||
552,1.0,8
|
||||
553,1.0,6
|
||||
554,0.0,5
|
||||
555,0.0,3
|
||||
556,0.0,2
|
||||
557,1.0,8
|
||||
558,1.0,6
|
||||
559,1.0,6
|
||||
560,1.0,6
|
||||
561,1.0,6
|
||||
562,1.0,6
|
||||
563,1.0,6
|
||||
564,1.0,6
|
||||
565,1.0,6
|
||||
566,1.0,6
|
||||
567,1.0,6
|
||||
568,1.0,6
|
||||
569,1.0,6
|
||||
570,1.0,6
|
||||
571,1.0,6
|
||||
572,0.0,2
|
||||
573,1.0,6
|
||||
574,0.0,4
|
||||
575,1.0,6
|
||||
576,1.0,6
|
||||
577,1.0,6
|
||||
578,1.0,6
|
||||
579,1.0,6
|
||||
580,1.0,8
|
||||
581,0.0,5
|
||||
582,1.0,6
|
||||
583,1.0,6
|
||||
584,1.0,6
|
||||
585,1.0,6
|
||||
586,1.0,6
|
||||
587,1.0,6
|
||||
588,0.0,3
|
||||
589,1.0,6
|
||||
590,1.0,6
|
||||
591,1.0,6
|
||||
592,0.0,2
|
||||
593,1.0,6
|
||||
594,0.0,4
|
||||
595,1.0,6
|
||||
596,1.0,6
|
||||
597,1.0,6
|
||||
598,1.0,6
|
||||
599,1.0,8
|
||||
600,1.0,6
|
||||
601,1.0,7
|
||||
602,1.0,6
|
||||
603,1.0,7
|
||||
604,1.0,6
|
||||
605,0.0,2
|
||||
606,1.0,6
|
||||
607,1.0,6
|
||||
608,0.0,5
|
||||
609,0.0,3
|
||||
610,0.0,3
|
||||
611,1.0,6
|
||||
612,0.0,5
|
||||
613,1.0,8
|
||||
614,1.0,8
|
||||
615,1.0,6
|
||||
616,1.0,6
|
||||
617,1.0,7
|
||||
618,1.0,6
|
||||
619,1.0,6
|
||||
620,1.0,6
|
||||
621,1.0,6
|
||||
622,1.0,6
|
||||
623,1.0,8
|
||||
624,0.0,2
|
||||
625,1.0,6
|
||||
626,1.0,6
|
||||
627,1.0,6
|
||||
628,1.0,6
|
||||
629,1.0,6
|
||||
630,1.0,6
|
||||
631,1.0,6
|
||||
632,1.0,8
|
||||
633,1.0,6
|
||||
634,1.0,8
|
||||
635,1.0,6
|
||||
636,1.0,6
|
||||
637,1.0,8
|
||||
638,1.0,8
|
||||
639,0.0,5
|
||||
640,0.0,4
|
||||
641,0.0,4
|
||||
642,1.0,6
|
||||
643,1.0,6
|
||||
644,1.0,6
|
||||
645,1.0,6
|
||||
646,1.0,8
|
||||
647,1.0,6
|
||||
648,0.0,4
|
||||
649,1.0,6
|
||||
650,1.0,8
|
||||
651,1.0,6
|
||||
652,1.0,6
|
||||
653,1.0,6
|
||||
654,1.0,6
|
||||
655,1.0,6
|
||||
656,1.0,6
|
||||
657,1.0,6
|
||||
658,1.0,8
|
||||
659,1.0,8
|
||||
660,1.0,6
|
||||
661,1.0,8
|
||||
662,1.0,9
|
||||
663,1.0,6
|
||||
664,1.0,6
|
||||
665,1.0,6
|
||||
666,1.0,6
|
||||
667,1.0,10
|
||||
668,1.0,6
|
||||
669,1.0,6
|
||||
670,1.0,6
|
||||
671,1.0,11
|
||||
672,1.0,10
|
||||
673,1.0,8
|
||||
674,1.0,6
|
||||
675,1.0,6
|
||||
676,1.0,6
|
||||
677,0.0,5
|
||||
678,1.0,6
|
||||
679,0.0,2
|
||||
680,1.0,9
|
||||
681,1.0,6
|
||||
682,1.0,8
|
||||
683,1.0,7
|
||||
684,1.0,6
|
||||
685,1.0,6
|
||||
686,1.0,7
|
||||
687,0.0,3
|
||||
688,1.0,7
|
||||
689,0.0,2
|
||||
690,1.0,6
|
||||
691,1.0,6
|
||||
692,1.0,8
|
||||
693,1.0,8
|
||||
694,1.0,6
|
||||
695,1.0,6
|
||||
696,0.0,2
|
||||
697,1.0,8
|
||||
698,1.0,6
|
||||
699,1.0,8
|
||||
700,1.0,6
|
||||
701,1.0,6
|
||||
702,1.0,9
|
||||
703,1.0,6
|
||||
704,1.0,8
|
||||
705,1.0,11
|
||||
706,1.0,6
|
||||
707,1.0,6
|
||||
708,1.0,6
|
||||
709,1.0,6
|
||||
710,1.0,8
|
||||
711,1.0,6
|
||||
712,1.0,6
|
||||
713,1.0,6
|
||||
714,0.0,5
|
||||
715,1.0,6
|
||||
716,1.0,6
|
||||
717,1.0,6
|
||||
718,1.0,6
|
||||
719,1.0,6
|
||||
720,1.0,7
|
||||
721,1.0,6
|
||||
722,1.0,6
|
||||
723,1.0,6
|
||||
724,1.0,6
|
||||
725,1.0,10
|
||||
726,1.0,6
|
||||
727,1.0,6
|
||||
728,1.0,6
|
||||
729,1.0,6
|
||||
730,1.0,6
|
||||
731,1.0,7
|
||||
732,1.0,6
|
||||
733,1.0,8
|
||||
734,1.0,7
|
||||
735,1.0,6
|
||||
736,1.0,6
|
||||
737,1.0,14
|
||||
738,1.0,6
|
||||
739,1.0,6
|
||||
740,1.0,12
|
||||
741,1.0,6
|
||||
742,1.0,6
|
||||
743,1.0,6
|
||||
744,1.0,6
|
||||
745,1.0,6
|
||||
746,1.0,6
|
||||
747,0.0,3
|
||||
748,1.0,6
|
||||
749,1.0,6
|
||||
750,1.0,6
|
||||
751,1.0,7
|
||||
752,1.0,6
|
||||
753,1.0,6
|
||||
754,1.0,6
|
||||
755,1.0,8
|
||||
756,0.0,2
|
||||
757,1.0,6
|
||||
758,1.0,6
|
||||
759,1.0,6
|
||||
760,1.0,6
|
||||
761,1.0,6
|
||||
762,1.0,6
|
||||
763,1.0,6
|
||||
764,1.0,6
|
||||
765,1.0,6
|
||||
766,0.0,4
|
||||
767,1.0,8
|
||||
768,1.0,6
|
||||
769,0.0,2
|
||||
770,1.0,10
|
||||
771,1.0,8
|
||||
772,1.0,6
|
||||
773,1.0,6
|
||||
774,1.0,6
|
||||
775,0.0,3
|
||||
776,1.0,6
|
||||
777,1.0,6
|
||||
778,0.0,6
|
||||
779,1.0,8
|
||||
780,1.0,6
|
||||
781,1.0,9
|
||||
782,1.0,6
|
||||
783,1.0,6
|
||||
784,1.0,8
|
||||
785,1.0,8
|
||||
786,1.0,6
|
||||
787,0.0,5
|
||||
788,1.0,6
|
||||
789,1.0,6
|
||||
790,1.0,6
|
||||
791,1.0,6
|
||||
792,1.0,6
|
||||
793,1.0,6
|
||||
794,1.0,8
|
||||
795,1.0,6
|
||||
796,0.0,2
|
||||
797,1.0,8
|
||||
798,1.0,7
|
||||
799,1.0,6
|
||||
|
Reference in New Issue
Block a user