hot update PG

This commit is contained in:
johnjim0816
2022-08-25 21:00:53 +08:00
parent 4f4658503e
commit 80f20c73be
34 changed files with 1391 additions and 1695 deletions

View File

@@ -0,0 +1,129 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:21:53
LastEditor: John
LastEditTime: 2022-08-25 20:59:23
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
parent_path = os.path.dirname(curr_path) # parent path
sys.path.append(parent_path) # add to system path
import gym
import torch
import datetime
import argparse
from itertools import count
import torch.nn.functional as F
from pg import PolicyGradient
from common.utils import save_results, make_dir,all_seed,save_args,plot_rewards
from common.models import MLP
from common.memories import PGReplay
from common.launcher import Launcher
from envs.register import register_env
class PGNet(MLP):
''' instead of outputing action, PG Net outputs propabilities of actions, we can use class inheritance from MLP here
'''
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.sigmoid(self.fc3(x))
return x
class Main(Launcher):
def get_args(self):
""" Hyperparameters
"""
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--algo_name',default='PolicyGradient',type=str,help="name of algorithm")
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
parser.add_argument('--lr',default=0.005,type=float,help="learning rate")
parser.add_argument('--update_fre',default=8,type=int)
parser.add_argument('--hidden_dim',default=36,type=int)
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
parser.add_argument('--seed',default=1,type=int,help="seed")
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
args = parser.parse_args()
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
}
args = {**vars(args),**default_args} # type(dict)
return args
def env_agent_config(self,cfg):
register_env(cfg['env_name'])
env = gym.make(cfg['env_name'])
if cfg['seed'] !=0: # set random seed
all_seed(env,seed=cfg['seed'])
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n # action dimension
print(f"state dim: {n_states}, action dim: {n_actions}")
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
model = PGNet(n_states,1,hidden_dim=cfg['hidden_dim'])
memory = PGReplay()
agent = PolicyGradient(model,memory,cfg)
return env,agent
def train(self,cfg,env,agent):
print("Start training!")
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
rewards = []
for i_ep in range(cfg['train_eps']):
state = env.reset()
ep_reward = 0
for _ in count():
action = agent.sample_action(state) # sample action
next_state, reward, done, _ = env.step(action)
ep_reward += reward
if done:
reward = 0
agent.memory.push((state,float(action),reward))
state = next_state
if done:
print(f"Episode{i_ep+1}/{cfg['train_eps']}, Reward:{ep_reward:.2f}")
break
if (i_ep+1) % cfg['update_fre'] == 0:
agent.update()
rewards.append(ep_reward)
print('Finish training!')
env.close() # close environment
res_dic = {'episodes':range(len(rewards)),'rewards':rewards}
return res_dic
def test(self,cfg,env,agent):
print("Start testing!")
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
rewards = []
for i_ep in range(cfg['test_eps']):
state = env.reset()
ep_reward = 0
for _ in count():
action = agent.predict_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
if done:
reward = 0
state = next_state
if done:
print(f"Episode: {i_ep+1}/{cfg['test_eps']}Reward: {ep_reward:.2f}")
break
rewards.append(ep_reward)
print("Finish testing!")
env.close()
return {'episodes':range(len(rewards)),'rewards':rewards}
if __name__ == "__main__":
main = Main()
main.run()