update
This commit is contained in:
@@ -5,12 +5,10 @@ Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-04-29 12:59:22
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2021-04-29 13:56:56
|
||||
LastEditTime: 2021-05-06 16:58:01
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
|
||||
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path = os.path.dirname(curr_path)
|
||||
@@ -36,7 +34,8 @@ class SACConfig:
|
||||
self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # path to save models
|
||||
self.train_eps = 300
|
||||
self.train_steps = 500
|
||||
|
||||
self.eval_eps = 50
|
||||
self.eval_steps = 500
|
||||
self.gamma = 0.99
|
||||
self.mean_lambda=1e-3
|
||||
self.std_lambda=1e-3
|
||||
@@ -49,7 +48,18 @@ class SACConfig:
|
||||
self.hidden_dim = 256
|
||||
self.batch_size = 128
|
||||
self.device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = NormalizedActions(gym.make("Pendulum-v0"))
|
||||
env.seed(seed)
|
||||
action_dim = env.action_space.shape[0]
|
||||
state_dim = env.observation_space.shape[0]
|
||||
agent = SAC(state_dim,action_dim,cfg)
|
||||
return env,agent
|
||||
|
||||
def train(cfg,env,agent):
|
||||
print('Start to train !')
|
||||
print(f'Env: {cfg.env}, Algorithm: {cfg.algo}, Device: {cfg.device}')
|
||||
rewards = []
|
||||
ma_rewards = [] # moveing average reward
|
||||
for i_ep in range(cfg.train_eps):
|
||||
@@ -64,25 +74,58 @@ def train(cfg,env,agent):
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}")
|
||||
if (i_ep+1)%10==0:
|
||||
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}")
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('Complete training!')
|
||||
return rewards, ma_rewards
|
||||
|
||||
def eval(cfg,env,agent):
|
||||
print('Start to eval !')
|
||||
print(f'Env: {cfg.env}, Algorithm: {cfg.algo}, Device: {cfg.device}')
|
||||
rewards = []
|
||||
ma_rewards = [] # moveing average reward
|
||||
for i_ep in range(cfg.eval_eps):
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
for i_step in range(cfg.eval_steps):
|
||||
action = agent.policy_net.get_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
if (i_ep+1)%10==0:
|
||||
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}")
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('Complete evaling!')
|
||||
return rewards, ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg=SACConfig()
|
||||
env = NormalizedActions(gym.make("Pendulum-v0"))
|
||||
action_dim = env.action_space.shape[0]
|
||||
state_dim = env.observation_space.shape[0]
|
||||
agent = SAC(state_dim,action_dim,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
make_dir(cfg.result_path,cfg.model_path)
|
||||
|
||||
# train
|
||||
env,agent = env_agent_config(cfg,seed=1)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path)
|
||||
agent.save(path=cfg.model_path)
|
||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
|
||||
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
|
||||
plot_rewards(rewards, ma_rewards, tag="train",
|
||||
algo=cfg.algo, path=cfg.result_path)
|
||||
# eval
|
||||
env,agent = env_agent_config(cfg,seed=10)
|
||||
agent.load(path=cfg.model_path)
|
||||
rewards,ma_rewards = eval(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user