update
This commit is contained in:
@@ -21,9 +21,6 @@ Note that ```model.py```,```memory.py```,```plot.py``` shall be utilized in diff
|
||||
|
||||
python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.18.0
|
||||
## Usage
|
||||
运行带有```train```的py文件或ipynb文件进行训练,如果前面带有```task```如```task0_train.py```,表示对task0任务训练
|
||||
类似的带有```eval```即为测试。
|
||||
|
||||
run python scripts or jupyter notebook file with ```train``` to train the agent, if there is a ```task``` like ```task0_train.py```, it means to train with task 0.
|
||||
|
||||
similar to file with ```eval```, which means to evaluate the agent.
|
||||
@@ -36,7 +33,7 @@ similar to file with ```eval```, which means to evaluate the agent.
|
||||
| [Q-Learning](./QLearning) | [towardsdatascience blog](https://towardsdatascience.com/simple-reinforcement-learning-q-learning-fcddc4b6fe56),[q learning paper](https://ieeexplore.ieee.org/document/8836506) | [CliffWalking-v0](./envs/gym_info.md) | |
|
||||
| [Sarsa](./Sarsa) | [geeksforgeeks blog](https://www.geeksforgeeks.org/sarsa-reinforcement-learning/) | [Racetrack](./envs/racetrack_env.md) | |
|
||||
| [DQN](./DQN) | [DQN Paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf),[Nature DQN Paper](https://www.nature.com/articles/nature14236) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [DQN-cnn](./DQN_cnn) | [DQN Paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | 与DQN相比使用了CNN而不是全链接网络 |
|
||||
| [DQN-cnn](./DQN_cnn) | [DQN Paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [DoubleDQN](./DoubleDQN) | [DoubleDQN Paper](https://arxiv.org/abs/1509.06461) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [Hierarchical DQN](HierarchicalDQN) | [H-DQN Paper](https://arxiv.org/abs/1604.06057) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [PolicyGradient](./PolicyGradient) | [Lil'log](https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
|
||||
Reference in New Issue
Block a user