update codes
@@ -18,6 +18,7 @@ from PPO.memory import PPOMemory
|
|||||||
class PPO:
|
class PPO:
|
||||||
def __init__(self, state_dim, action_dim,cfg):
|
def __init__(self, state_dim, action_dim,cfg):
|
||||||
self.gamma = cfg.gamma
|
self.gamma = cfg.gamma
|
||||||
|
self.continuous = cfg.continuous
|
||||||
self.policy_clip = cfg.policy_clip
|
self.policy_clip = cfg.policy_clip
|
||||||
self.n_epochs = cfg.n_epochs
|
self.n_epochs = cfg.n_epochs
|
||||||
self.gae_lambda = cfg.gae_lambda
|
self.gae_lambda = cfg.gae_lambda
|
||||||
@@ -29,13 +30,13 @@ class PPO:
|
|||||||
self.memory = PPOMemory(cfg.batch_size)
|
self.memory = PPOMemory(cfg.batch_size)
|
||||||
self.loss = 0
|
self.loss = 0
|
||||||
|
|
||||||
def choose_action(self, state,continuous=False):
|
def choose_action(self, state):
|
||||||
state = torch.tensor([state], dtype=torch.float).to(self.device)
|
state = torch.tensor([state], dtype=torch.float).to(self.device)
|
||||||
dist = self.actor(state)
|
dist = self.actor(state)
|
||||||
value = self.critic(state)
|
value = self.critic(state)
|
||||||
action = dist.sample()
|
action = dist.sample()
|
||||||
probs = torch.squeeze(dist.log_prob(action)).item()
|
probs = torch.squeeze(dist.log_prob(action)).item()
|
||||||
if continuous:
|
if self.continuous:
|
||||||
action = torch.tanh(action)
|
action = torch.tanh(action)
|
||||||
else:
|
else:
|
||||||
action = torch.squeeze(action).item()
|
action = torch.squeeze(action).item()
|
||||||
|
|||||||
67
codes/PPO/task0.py
Normal file
@@ -0,0 +1,67 @@
|
|||||||
|
import sys,os
|
||||||
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||||
|
parent_path = os.path.dirname(curr_path) # 父路径
|
||||||
|
sys.path.append(parent_path) # 添加路径到系统路径
|
||||||
|
|
||||||
|
import gym
|
||||||
|
import torch
|
||||||
|
import datetime
|
||||||
|
from common.plot import plot_rewards
|
||||||
|
from common.utils import save_results,make_dir
|
||||||
|
from PPO.agent import PPO
|
||||||
|
from PPO.train import train
|
||||||
|
|
||||||
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||||
|
|
||||||
|
class PPOConfig:
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.algo = "DQN" # 算法名称
|
||||||
|
self.env_name = 'CartPole-v0' # 环境名称
|
||||||
|
self.continuous = False # 环境是否为连续动作
|
||||||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
|
self.train_eps = 200 # 训练的回合数
|
||||||
|
self.eval_eps = 20 # 测试的回合数
|
||||||
|
self.batch_size = 5
|
||||||
|
self.gamma=0.99
|
||||||
|
self.n_epochs = 4
|
||||||
|
self.actor_lr = 0.0003
|
||||||
|
self.critic_lr = 0.0003
|
||||||
|
self.gae_lambda=0.95
|
||||||
|
self.policy_clip=0.2
|
||||||
|
self.hidden_dim = 256
|
||||||
|
self.update_fre = 20 # frequency of agent update
|
||||||
|
|
||||||
|
class PlotConfig:
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.algo = "DQN" # 算法名称
|
||||||
|
self.env_name = 'CartPole-v0' # 环境名称
|
||||||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
|
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/results/' # 保存结果的路径
|
||||||
|
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/models/' # 保存模型的路径
|
||||||
|
self.save = True # 是否保存图片
|
||||||
|
|
||||||
|
def env_agent_config(cfg,seed=1):
|
||||||
|
env = gym.make(cfg.env_name)
|
||||||
|
env.seed(seed)
|
||||||
|
state_dim = env.observation_space.shape[0]
|
||||||
|
action_dim = env.action_space.n
|
||||||
|
agent = PPO(state_dim,action_dim,cfg)
|
||||||
|
return env,agent
|
||||||
|
|
||||||
|
cfg = PPOConfig()
|
||||||
|
plot_cfg = PlotConfig()
|
||||||
|
# 训练
|
||||||
|
env,agent = env_agent_config(cfg,seed=1)
|
||||||
|
rewards, ma_rewards = train(cfg, env, agent)
|
||||||
|
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||||
|
agent.save(path=plot_cfg.model_path)
|
||||||
|
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path)
|
||||||
|
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train")
|
||||||
|
# 测试
|
||||||
|
env,agent = env_agent_config(cfg,seed=10)
|
||||||
|
agent.load(path=plot_cfg.model_path)
|
||||||
|
rewards,ma_rewards = eval(cfg,env,agent)
|
||||||
|
save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path)
|
||||||
|
plot_rewards(rewards,ma_rewards,plot_cfg,tag="eval")
|
||||||
68
codes/PPO/task1.py
Normal file
@@ -0,0 +1,68 @@
|
|||||||
|
import sys,os
|
||||||
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||||
|
parent_path = os.path.dirname(curr_path) # 父路径
|
||||||
|
sys.path.append(parent_path) # 添加路径到系统路径
|
||||||
|
|
||||||
|
import gym
|
||||||
|
import torch
|
||||||
|
import datetime
|
||||||
|
from common.plot import plot_rewards
|
||||||
|
from common.utils import save_results,make_dir
|
||||||
|
from PPO.agent import PPO
|
||||||
|
from PPO.train import train
|
||||||
|
|
||||||
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||||
|
|
||||||
|
class PPOConfig:
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.algo = "PPO" # 算法名称
|
||||||
|
self.env_name = 'Pendulum-v1' # 环境名称
|
||||||
|
self.continuous = True # 环境是否为连续动作
|
||||||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
|
self.train_eps = 200 # 训练的回合数
|
||||||
|
self.eval_eps = 20 # 测试的回合数
|
||||||
|
self.batch_size = 5
|
||||||
|
self.gamma=0.99
|
||||||
|
self.n_epochs = 4
|
||||||
|
self.actor_lr = 0.0003
|
||||||
|
self.critic_lr = 0.0003
|
||||||
|
self.gae_lambda=0.95
|
||||||
|
self.policy_clip=0.2
|
||||||
|
self.hidden_dim = 256
|
||||||
|
self.update_fre = 20 # frequency of agent update
|
||||||
|
|
||||||
|
class PlotConfig:
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.algo = "PPO" # 算法名称
|
||||||
|
self.env_name = 'Pendulum-v1' # 环境名称
|
||||||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
|
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/results/' # 保存结果的路径
|
||||||
|
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/models/' # 保存模型的路径
|
||||||
|
self.save = True # 是否保存图片
|
||||||
|
|
||||||
|
def env_agent_config(cfg,seed=1):
|
||||||
|
env = gym.make(cfg.env_name)
|
||||||
|
env.seed(seed)
|
||||||
|
state_dim = env.observation_space.shape[0]
|
||||||
|
action_dim = env.action_space.shape[0]
|
||||||
|
agent = PPO(state_dim,action_dim,cfg)
|
||||||
|
return env,agent
|
||||||
|
|
||||||
|
|
||||||
|
cfg = PPOConfig()
|
||||||
|
plot_cfg = PlotConfig()
|
||||||
|
# 训练
|
||||||
|
env,agent = env_agent_config(cfg,seed=1)
|
||||||
|
rewards, ma_rewards = train(cfg, env, agent)
|
||||||
|
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||||
|
agent.save(path=plot_cfg.model_path)
|
||||||
|
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path)
|
||||||
|
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train")
|
||||||
|
# 测试
|
||||||
|
env,agent = env_agent_config(cfg,seed=10)
|
||||||
|
agent.load(path=plot_cfg.model_path)
|
||||||
|
rewards,ma_rewards = eval(cfg,env,agent)
|
||||||
|
save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path)
|
||||||
|
plot_rewards(rewards,ma_rewards,plot_cfg,tag="eval")
|
||||||
@@ -1,132 +0,0 @@
|
|||||||
#!/usr/bin/env python
|
|
||||||
# coding=utf-8
|
|
||||||
'''
|
|
||||||
Author: John
|
|
||||||
Email: johnjim0816@gmail.com
|
|
||||||
Date: 2021-03-22 16:18:10
|
|
||||||
LastEditor: John
|
|
||||||
LastEditTime: 2021-09-26 22:05:00
|
|
||||||
Discription:
|
|
||||||
Environment:
|
|
||||||
'''
|
|
||||||
import sys,os
|
|
||||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
|
||||||
parent_path = os.path.dirname(curr_path) # 父路径
|
|
||||||
sys.path.append(parent_path) # 添加路径到系统路径
|
|
||||||
|
|
||||||
import gym
|
|
||||||
import torch
|
|
||||||
import datetime
|
|
||||||
from PPO.agent import PPO
|
|
||||||
from common.plot import plot_rewards
|
|
||||||
from common.utils import save_results,make_dir
|
|
||||||
|
|
||||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
|
||||||
|
|
||||||
class PPOConfig:
|
|
||||||
def __init__(self) -> None:
|
|
||||||
self.algo = "PPO" # 算法名称
|
|
||||||
self.env_name = 'Pendulum-v1' # 环境名称
|
|
||||||
self.continuous = True # 环境是否为连续动作
|
|
||||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
|
||||||
self.train_eps = 200 # 训练的回合数
|
|
||||||
self.eval_eps = 20 # 测试的回合数
|
|
||||||
self.batch_size = 5
|
|
||||||
self.gamma=0.99
|
|
||||||
self.n_epochs = 4
|
|
||||||
self.actor_lr = 0.0003
|
|
||||||
self.critic_lr = 0.0003
|
|
||||||
self.gae_lambda=0.95
|
|
||||||
self.policy_clip=0.2
|
|
||||||
self.hidden_dim = 256
|
|
||||||
self.update_fre = 20 # frequency of agent update
|
|
||||||
|
|
||||||
class PlotConfig:
|
|
||||||
def __init__(self) -> None:
|
|
||||||
self.algo = "PPO" # 算法名称
|
|
||||||
self.env_name = 'Pendulum-v1' # 环境名称
|
|
||||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
|
||||||
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
|
||||||
'/'+curr_time+'/results/' # 保存结果的路径
|
|
||||||
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
|
||||||
'/'+curr_time+'/models/' # 保存模型的路径
|
|
||||||
self.save = True # 是否保存图片
|
|
||||||
|
|
||||||
def env_agent_config(cfg,seed=1):
|
|
||||||
env = gym.make(cfg.env_name)
|
|
||||||
env.seed(seed)
|
|
||||||
state_dim = env.observation_space.shape[0]
|
|
||||||
action_dim = env.action_space.shape[0]
|
|
||||||
agent = PPO(state_dim,action_dim,cfg)
|
|
||||||
return env,agent
|
|
||||||
|
|
||||||
def train(cfg,env,agent):
|
|
||||||
print('开始训练!')
|
|
||||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
|
||||||
rewards = [] # 记录所有回合的奖励
|
|
||||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
|
||||||
steps = 0
|
|
||||||
for i_ep in range(cfg.train_eps):
|
|
||||||
state = env.reset()
|
|
||||||
done = False
|
|
||||||
ep_reward = 0
|
|
||||||
while not done:
|
|
||||||
action, prob, val = agent.choose_action(state,continuous=cfg.continuous)
|
|
||||||
print(action)
|
|
||||||
state_, reward, done, _ = env.step(action)
|
|
||||||
steps += 1
|
|
||||||
ep_reward += reward
|
|
||||||
agent.memory.push(state, action, prob, val, reward, done)
|
|
||||||
if steps % cfg.update_fre == 0:
|
|
||||||
agent.update()
|
|
||||||
state = state_
|
|
||||||
rewards.append(ep_reward)
|
|
||||||
if ma_rewards:
|
|
||||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
|
||||||
else:
|
|
||||||
ma_rewards.append(ep_reward)
|
|
||||||
if (i_ep+1)%10 == 0:
|
|
||||||
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}")
|
|
||||||
print('完成训练!')
|
|
||||||
return rewards,ma_rewards
|
|
||||||
|
|
||||||
def eval(cfg,env,agent):
|
|
||||||
print('开始测试!')
|
|
||||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
|
||||||
rewards = [] # 记录所有回合的奖励
|
|
||||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
|
||||||
for i_ep in range(cfg.eval_eps):
|
|
||||||
state = env.reset()
|
|
||||||
done = False
|
|
||||||
ep_reward = 0
|
|
||||||
while not done:
|
|
||||||
action, prob, val = agent.choose_action(state,continuous=False)
|
|
||||||
state_, reward, done, _ = env.step(action)
|
|
||||||
ep_reward += reward
|
|
||||||
state = state_
|
|
||||||
rewards.append(ep_reward)
|
|
||||||
if ma_rewards:
|
|
||||||
ma_rewards.append(
|
|
||||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
|
||||||
else:
|
|
||||||
ma_rewards.append(ep_reward)
|
|
||||||
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.eval_eps, ep_reward))
|
|
||||||
print('完成训练!')
|
|
||||||
return rewards,ma_rewards
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
cfg = PPOConfig()
|
|
||||||
plot_cfg = PlotConfig()
|
|
||||||
# 训练
|
|
||||||
env,agent = env_agent_config(cfg,seed=1)
|
|
||||||
rewards, ma_rewards = train(cfg, env, agent)
|
|
||||||
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
|
||||||
agent.save(path=plot_cfg.model_path)
|
|
||||||
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path)
|
|
||||||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train")
|
|
||||||
# 测试
|
|
||||||
env,agent = env_agent_config(cfg,seed=10)
|
|
||||||
agent.load(path=plot_cfg.model_path)
|
|
||||||
rewards,ma_rewards = eval(cfg,env,agent)
|
|
||||||
save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path)
|
|
||||||
plot_rewards(rewards,ma_rewards,plot_cfg,tag="eval")
|
|
||||||
@@ -1,65 +1,3 @@
|
|||||||
#!/usr/bin/env python
|
|
||||||
# coding=utf-8
|
|
||||||
'''
|
|
||||||
Author: John
|
|
||||||
Email: johnjim0816@gmail.com
|
|
||||||
Date: 2021-03-22 16:18:10
|
|
||||||
LastEditor: John
|
|
||||||
LastEditTime: 2021-09-26 22:05:00
|
|
||||||
Discription:
|
|
||||||
Environment:
|
|
||||||
'''
|
|
||||||
import sys,os
|
|
||||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
|
||||||
parent_path = os.path.dirname(curr_path) # 父路径
|
|
||||||
sys.path.append(parent_path) # 添加路径到系统路径
|
|
||||||
|
|
||||||
import gym
|
|
||||||
import torch
|
|
||||||
import datetime
|
|
||||||
from PPO.agent import PPO
|
|
||||||
from common.plot import plot_rewards
|
|
||||||
from common.utils import save_results,make_dir
|
|
||||||
|
|
||||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
|
||||||
|
|
||||||
class PPOConfig:
|
|
||||||
def __init__(self) -> None:
|
|
||||||
self.algo = "DQN" # 算法名称
|
|
||||||
self.env_name = 'CartPole-v0' # 环境名称
|
|
||||||
self.continuous = False # 环境是否为连续动作
|
|
||||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
|
||||||
self.train_eps = 200 # 训练的回合数
|
|
||||||
self.eval_eps = 20 # 测试的回合数
|
|
||||||
self.batch_size = 5
|
|
||||||
self.gamma=0.99
|
|
||||||
self.n_epochs = 4
|
|
||||||
self.actor_lr = 0.0003
|
|
||||||
self.critic_lr = 0.0003
|
|
||||||
self.gae_lambda=0.95
|
|
||||||
self.policy_clip=0.2
|
|
||||||
self.hidden_dim = 256
|
|
||||||
self.update_fre = 20 # frequency of agent update
|
|
||||||
|
|
||||||
class PlotConfig:
|
|
||||||
def __init__(self) -> None:
|
|
||||||
self.algo = "DQN" # 算法名称
|
|
||||||
self.env_name = 'CartPole-v0' # 环境名称
|
|
||||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
|
||||||
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
|
||||||
'/'+curr_time+'/results/' # 保存结果的路径
|
|
||||||
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
|
||||||
'/'+curr_time+'/models/' # 保存模型的路径
|
|
||||||
self.save = True # 是否保存图片
|
|
||||||
|
|
||||||
def env_agent_config(cfg,seed=1):
|
|
||||||
env = gym.make(cfg.env_name)
|
|
||||||
env.seed(seed)
|
|
||||||
state_dim = env.observation_space.shape[0]
|
|
||||||
action_dim = env.action_space.n
|
|
||||||
agent = PPO(state_dim,action_dim,cfg)
|
|
||||||
return env,agent
|
|
||||||
|
|
||||||
def train(cfg,env,agent):
|
def train(cfg,env,agent):
|
||||||
print('开始训练!')
|
print('开始训练!')
|
||||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||||
@@ -71,7 +9,7 @@ def train(cfg,env,agent):
|
|||||||
done = False
|
done = False
|
||||||
ep_reward = 0
|
ep_reward = 0
|
||||||
while not done:
|
while not done:
|
||||||
action, prob, val = agent.choose_action(state,continuous=cfg.continuous)
|
action, prob, val = agent.choose_action(state)
|
||||||
state_, reward, done, _ = env.step(action)
|
state_, reward, done, _ = env.step(action)
|
||||||
steps += 1
|
steps += 1
|
||||||
ep_reward += reward
|
ep_reward += reward
|
||||||
@@ -99,7 +37,7 @@ def eval(cfg,env,agent):
|
|||||||
done = False
|
done = False
|
||||||
ep_reward = 0
|
ep_reward = 0
|
||||||
while not done:
|
while not done:
|
||||||
action, prob, val = agent.choose_action(state,cfg.continuous)
|
action, prob, val = agent.choose_action(state)
|
||||||
state_, reward, done, _ = env.step(action)
|
state_, reward, done, _ = env.step(action)
|
||||||
ep_reward += reward
|
ep_reward += reward
|
||||||
state = state_
|
state = state_
|
||||||
@@ -112,8 +50,60 @@ def eval(cfg,env,agent):
|
|||||||
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.eval_eps, ep_reward))
|
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.eval_eps, ep_reward))
|
||||||
print('完成训练!')
|
print('完成训练!')
|
||||||
return rewards,ma_rewards
|
return rewards,ma_rewards
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
import sys,os
|
||||||
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||||
|
parent_path = os.path.dirname(curr_path) # 父路径
|
||||||
|
sys.path.append(parent_path) # 添加路径到系统路径
|
||||||
|
|
||||||
|
import gym
|
||||||
|
import torch
|
||||||
|
import datetime
|
||||||
|
from common.plot import plot_rewards
|
||||||
|
from common.utils import save_results,make_dir
|
||||||
|
from PPO.agent import PPO
|
||||||
|
from PPO.train import train
|
||||||
|
|
||||||
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||||
|
|
||||||
|
class PPOConfig:
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.algo = "DQN" # 算法名称
|
||||||
|
self.env_name = 'CartPole-v0' # 环境名称
|
||||||
|
self.continuous = False # 环境是否为连续动作
|
||||||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
|
self.train_eps = 200 # 训练的回合数
|
||||||
|
self.eval_eps = 20 # 测试的回合数
|
||||||
|
self.batch_size = 5
|
||||||
|
self.gamma=0.99
|
||||||
|
self.n_epochs = 4
|
||||||
|
self.actor_lr = 0.0003
|
||||||
|
self.critic_lr = 0.0003
|
||||||
|
self.gae_lambda=0.95
|
||||||
|
self.policy_clip=0.2
|
||||||
|
self.hidden_dim = 256
|
||||||
|
self.update_fre = 20 # frequency of agent update
|
||||||
|
|
||||||
|
class PlotConfig:
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.algo = "DQN" # 算法名称
|
||||||
|
self.env_name = 'CartPole-v0' # 环境名称
|
||||||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
|
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/results/' # 保存结果的路径
|
||||||
|
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/models/' # 保存模型的路径
|
||||||
|
self.save = True # 是否保存图片
|
||||||
|
|
||||||
|
def env_agent_config(cfg,seed=1):
|
||||||
|
env = gym.make(cfg.env_name)
|
||||||
|
env.seed(seed)
|
||||||
|
state_dim = env.observation_space.shape[0]
|
||||||
|
action_dim = env.action_space.n
|
||||||
|
agent = PPO(state_dim,action_dim,cfg)
|
||||||
|
return env,agent
|
||||||
|
|
||||||
cfg = PPOConfig()
|
cfg = PPOConfig()
|
||||||
plot_cfg = PlotConfig()
|
plot_cfg = PlotConfig()
|
||||||
# 训练
|
# 训练
|
||||||
@@ -128,4 +118,4 @@ if __name__ == '__main__':
|
|||||||
agent.load(path=plot_cfg.model_path)
|
agent.load(path=plot_cfg.model_path)
|
||||||
rewards,ma_rewards = eval(cfg,env,agent)
|
rewards,ma_rewards = eval(cfg,env,agent)
|
||||||
save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path)
|
save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path)
|
||||||
plot_rewards(rewards,ma_rewards,plot_cfg,tag="eval")
|
plot_rewards(rewards,ma_rewards,plot_cfg,tag="eval")
|
||||||
@@ -1,6 +1,3 @@
|
|||||||
|
|
||||||
[Eng](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README_en.md)|[中文](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README.md)
|
|
||||||
|
|
||||||
## 写在前面
|
## 写在前面
|
||||||
|
|
||||||
本项目用于学习RL基础算法,尽量做到: **注释详细**,**结构清晰**。
|
本项目用于学习RL基础算法,尽量做到: **注释详细**,**结构清晰**。
|
||||||
@@ -12,7 +9,7 @@
|
|||||||
* ```plot.py``` 利用matplotlib或seaborn绘制rewards图,包括滑动平均的reward,结果保存在result文件夹中
|
* ```plot.py``` 利用matplotlib或seaborn绘制rewards图,包括滑动平均的reward,结果保存在result文件夹中
|
||||||
* ```env.py``` 用于构建强化学习环境,也可以重新自定义环境,比如给action加noise
|
* ```env.py``` 用于构建强化学习环境,也可以重新自定义环境,比如给action加noise
|
||||||
* ```agent.py``` RL核心算法,比如dqn等,主要包含update和choose_action两个方法,
|
* ```agent.py``` RL核心算法,比如dqn等,主要包含update和choose_action两个方法,
|
||||||
* ```main.py``` 运行主函数
|
* ```train.py``` 保存用于训练和测试的函数
|
||||||
|
|
||||||
其中```model.py```,```memory.py```,```plot.py``` 由于不同算法都会用到,所以放入```common```文件夹中。
|
其中```model.py```,```memory.py```,```plot.py``` 由于不同算法都会用到,所以放入```common```文件夹中。
|
||||||
|
|
||||||
@@ -22,8 +19,8 @@ python 3.7、pytorch 1.6.0-1.8.1、gym 0.17.0-0.19.0
|
|||||||
|
|
||||||
## 使用说明
|
## 使用说明
|
||||||
|
|
||||||
运行带有```train```的py文件或ipynb文件进行训练,如果前面带有```task```如```task0_train.py```,表示对task0任务训练,
|
直接运行带有```train```的py文件或ipynb文件会进行训练默认的任务;
|
||||||
类似的带有```eval```即为测试。
|
也可以运行带有```task```的py文件训练不同的任务
|
||||||
|
|
||||||
## 内容导航
|
## 内容导航
|
||||||
|
|
||||||
|
|||||||
@@ -10,10 +10,9 @@ Discription:
|
|||||||
Environment:
|
Environment:
|
||||||
'''
|
'''
|
||||||
import sys,os
|
import sys,os
|
||||||
curr_path = os.path.dirname(__file__)
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||||
parent_path = os.path.dirname(curr_path)
|
parent_path = os.path.dirname(curr_path) # 父路径
|
||||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
sys.path.append(parent_path) # 添加路径到系统路径
|
||||||
|
|
||||||
|
|
||||||
import gym
|
import gym
|
||||||
import torch
|
import torch
|
||||||
@@ -24,7 +23,7 @@ from SAC.agent import SAC
|
|||||||
from common.utils import save_results, make_dir
|
from common.utils import save_results, make_dir
|
||||||
from common.plot import plot_rewards
|
from common.plot import plot_rewards
|
||||||
|
|
||||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||||
|
|
||||||
class SACConfig:
|
class SACConfig:
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
@@ -48,6 +47,14 @@ class SACConfig:
|
|||||||
self.hidden_dim = 256
|
self.hidden_dim = 256
|
||||||
self.batch_size = 128
|
self.batch_size = 128
|
||||||
self.device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
self.device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
class PlotConfig(SACConfig):
|
||||||
|
def __init__(self) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/results/' # 保存结果的路径
|
||||||
|
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/models/' # 保存模型的路径
|
||||||
|
self.save = True # 是否保存图片
|
||||||
|
|
||||||
def env_agent_config(cfg,seed=1):
|
def env_agent_config(cfg,seed=1):
|
||||||
env = NormalizedActions(gym.make(cfg.env_name))
|
env = NormalizedActions(gym.make(cfg.env_name))
|
||||||
@@ -58,13 +65,13 @@ def env_agent_config(cfg,seed=1):
|
|||||||
return env,agent
|
return env,agent
|
||||||
|
|
||||||
def train(cfg,env,agent):
|
def train(cfg,env,agent):
|
||||||
print('Start to train !')
|
print('开始训练!')
|
||||||
print(f'Env: {cfg.env_name}, Algorithm: {cfg.algo}, Device: {cfg.device}')
|
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||||
rewards = []
|
rewards = [] # 记录所有回合的奖励
|
||||||
ma_rewards = [] # moveing average reward
|
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||||
for i_ep in range(cfg.train_eps):
|
for i_ep in range(cfg.train_eps):
|
||||||
state = env.reset()
|
ep_reward = 0 # 记录一回合内的奖励
|
||||||
ep_reward = 0
|
state = env.reset() # 重置环境,返回初始状态
|
||||||
for i_step in range(cfg.train_steps):
|
for i_step in range(cfg.train_steps):
|
||||||
action = agent.policy_net.get_action(state)
|
action = agent.policy_net.get_action(state)
|
||||||
next_state, reward, done, _ = env.step(action)
|
next_state, reward, done, _ = env.step(action)
|
||||||
@@ -111,21 +118,20 @@ def eval(cfg,env,agent):
|
|||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
cfg=SACConfig()
|
cfg=SACConfig()
|
||||||
|
plot_cfg = PlotConfig()
|
||||||
# train
|
# train
|
||||||
env,agent = env_agent_config(cfg,seed=1)
|
env,agent = env_agent_config(cfg,seed=1)
|
||||||
rewards, ma_rewards = train(cfg, env, agent)
|
rewards, ma_rewards = train(cfg, env, agent)
|
||||||
make_dir(cfg.result_path, cfg.model_path)
|
make_dir(plot_cfg.result_path, plot_cfg.model_path)
|
||||||
agent.save(path=cfg.model_path)
|
agent.save(path=plot_cfg.model_path)
|
||||||
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
|
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path)
|
||||||
plot_rewards(rewards, ma_rewards, tag="train",
|
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train")
|
||||||
algo=cfg.algo, path=cfg.result_path)
|
|
||||||
# eval
|
# eval
|
||||||
env,agent = env_agent_config(cfg,seed=10)
|
env,agent = env_agent_config(cfg,seed=10)
|
||||||
agent.load(path=cfg.model_path)
|
agent.load(path=plot_cfg.model_path)
|
||||||
rewards,ma_rewards = eval(cfg,env,agent)
|
rewards,ma_rewards = eval(cfg,env,agent)
|
||||||
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path)
|
||||||
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
plot_rewards(rewards,ma_rewards,plot_cfg,tag="eval")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
|
Before Width: | Height: | Size: 44 KiB After Width: | Height: | Size: 44 KiB |
BIN
codes/TD3/outputs/Pendulum-v1/20211119-123814/models/td3_actor
Normal file
BIN
codes/TD3/outputs/Pendulum-v1/20211119-123814/models/td3_critic
Normal file
|
After Width: | Height: | Size: 67 KiB |
|
Before Width: | Height: | Size: 55 KiB After Width: | Height: | Size: 55 KiB |
|
Before Width: | Height: | Size: 51 KiB |
|
Before Width: | Height: | Size: 56 KiB |
|
Before Width: | Height: | Size: 70 KiB |
@@ -1,41 +1,47 @@
|
|||||||
import sys,os
|
import sys,os
|
||||||
curr_path = os.path.dirname(__file__)
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||||
parent_path=os.path.dirname(curr_path)
|
parent_path = os.path.dirname(curr_path) # 父路径
|
||||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
sys.path.append(parent_path) # 添加路径到系统路径
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import gym
|
import gym
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import datetime
|
import datetime
|
||||||
|
|
||||||
|
|
||||||
from TD3.agent import TD3
|
from TD3.agent import TD3
|
||||||
from common.plot import plot_rewards
|
from common.plot import plot_rewards
|
||||||
from common.utils import save_results,make_dir
|
from common.utils import save_results,make_dir
|
||||||
|
|
||||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||||
|
|
||||||
|
|
||||||
class TD3Config:
|
class TD3Config:
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
self.algo = 'TD3'
|
self.algo = 'TD3' # 算法名称
|
||||||
self.env = 'Pendulum-v0'
|
self.env_name = 'Pendulum-v1' # 环境名称
|
||||||
self.seed = 0
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
|
self.train_eps = 600 # 训练的回合数
|
||||||
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
|
|
||||||
self.start_timestep = 25e3 # Time steps initial random policy is used
|
self.start_timestep = 25e3 # Time steps initial random policy is used
|
||||||
self.start_ep = 50 # Episodes initial random policy is used
|
self.epsilon_start = 50 # Episodes initial random policy is used
|
||||||
self.eval_freq = 10 # How often (episodes) we evaluate
|
self.eval_freq = 10 # How often (episodes) we evaluate
|
||||||
self.train_eps = 600
|
|
||||||
self.max_timestep = 100000 # Max time steps to run environment
|
self.max_timestep = 100000 # Max time steps to run environment
|
||||||
self.expl_noise = 0.1 # Std of Gaussian exploration noise
|
self.expl_noise = 0.1 # Std of Gaussian exploration noise
|
||||||
self.batch_size = 256 # Batch size for both actor and critic
|
self.batch_size = 256 # Batch size for both actor and critic
|
||||||
self.gamma = 0.9 # gamma factor
|
self.gamma = 0.9 # gamma factor
|
||||||
self.lr = 0.0005 # Target network update rate
|
self.lr = 0.0005 # 学习率
|
||||||
self.policy_noise = 0.2 # Noise added to target policy during critic update
|
self.policy_noise = 0.2 # Noise added to target policy during critic update
|
||||||
self.noise_clip = 0.3 # Range to clip target policy noise
|
self.noise_clip = 0.3 # Range to clip target policy noise
|
||||||
self.policy_freq = 2 # Frequency of delayed policy updates
|
self.policy_freq = 2 # Frequency of delayed policy updates
|
||||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
class PlotConfig(TD3Config):
|
||||||
|
def __init__(self) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/results/' # 保存结果的路径
|
||||||
|
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/models/' # 保存模型的路径
|
||||||
|
self.save = True # 是否保存图片
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# Runs policy for X episodes and returns average reward
|
# Runs policy for X episodes and returns average reward
|
||||||
# A fixed seed is used for the eval environment
|
# A fixed seed is used for the eval environment
|
||||||
@@ -57,8 +63,10 @@ def eval(env,agent, seed, eval_episodes=10):
|
|||||||
return avg_reward
|
return avg_reward
|
||||||
|
|
||||||
def train(cfg,env,agent):
|
def train(cfg,env,agent):
|
||||||
rewards = []
|
print('开始训练!')
|
||||||
ma_rewards = [] # moveing average reward
|
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||||
|
rewards = [] # 记录所有回合的奖励
|
||||||
|
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||||
for i_ep in range(int(cfg.train_eps)):
|
for i_ep in range(int(cfg.train_eps)):
|
||||||
ep_reward = 0
|
ep_reward = 0
|
||||||
ep_timesteps = 0
|
ep_timesteps = 0
|
||||||
@@ -66,7 +74,7 @@ def train(cfg,env,agent):
|
|||||||
while not done:
|
while not done:
|
||||||
ep_timesteps += 1
|
ep_timesteps += 1
|
||||||
# Select action randomly or according to policy
|
# Select action randomly or according to policy
|
||||||
if i_ep < cfg.start_ep:
|
if i_ep < cfg.epsilon_start:
|
||||||
action = env.action_space.sample()
|
action = env.action_space.sample()
|
||||||
else:
|
else:
|
||||||
action = (
|
action = (
|
||||||
@@ -81,32 +89,34 @@ def train(cfg,env,agent):
|
|||||||
state = next_state
|
state = next_state
|
||||||
ep_reward += reward
|
ep_reward += reward
|
||||||
# Train agent after collecting sufficient data
|
# Train agent after collecting sufficient data
|
||||||
if i_ep+1 >= cfg.start_ep:
|
if i_ep+1 >= cfg.epsilon_start:
|
||||||
agent.update()
|
agent.update()
|
||||||
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Step:{ep_timesteps}, Reward:{ep_reward:.3f}")
|
if (i_ep+1)%10 == 0:
|
||||||
|
print('回合:{}/{}, 奖励:{:.2f}'.format(i_ep+1, cfg.train_eps, ep_reward))
|
||||||
rewards.append(ep_reward)
|
rewards.append(ep_reward)
|
||||||
# 计算滑动窗口的reward
|
|
||||||
if ma_rewards:
|
if ma_rewards:
|
||||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||||
else:
|
else:
|
||||||
ma_rewards.append(ep_reward)
|
ma_rewards.append(ep_reward)
|
||||||
|
print('完成训练!')
|
||||||
return rewards, ma_rewards
|
return rewards, ma_rewards
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
cfg = TD3Config()
|
cfg = TD3Config()
|
||||||
env = gym.make(cfg.env)
|
plot_cfg = PlotConfig()
|
||||||
env.seed(cfg.seed) # Set seeds
|
env = gym.make(cfg.env_name)
|
||||||
torch.manual_seed(cfg.seed)
|
env.seed(1) # 随机种子
|
||||||
np.random.seed(cfg.seed)
|
torch.manual_seed(1)
|
||||||
|
np.random.seed(1)
|
||||||
state_dim = env.observation_space.shape[0]
|
state_dim = env.observation_space.shape[0]
|
||||||
action_dim = env.action_space.shape[0]
|
action_dim = env.action_space.shape[0]
|
||||||
max_action = float(env.action_space.high[0])
|
max_action = float(env.action_space.high[0])
|
||||||
agent = TD3(state_dim,action_dim,max_action,cfg)
|
agent = TD3(state_dim,action_dim,max_action,cfg)
|
||||||
rewards,ma_rewards = train(cfg,env,agent)
|
rewards,ma_rewards = train(cfg,env,agent)
|
||||||
make_dir(cfg.result_path,cfg.model_path)
|
make_dir(plot_cfg.result_path,plot_cfg.model_path)
|
||||||
agent.save(path=cfg.model_path)
|
agent.save(path=plot_cfg.model_path)
|
||||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
save_results(rewards,ma_rewards,tag='train',path=plot_cfg.result_path)
|
||||||
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
plot_rewards(rewards,ma_rewards,plot_cfg,tag="train")
|
||||||
|
|
||||||
|
|
||||||
|
|||||||