update codes

This commit is contained in:
johnjim0816
2021-11-19 16:02:34 +08:00
parent 129c0c65fa
commit 64c319cab4
47 changed files with 262 additions and 255 deletions

View File

@@ -1,41 +1,47 @@
import sys,os
curr_path = os.path.dirname(__file__)
parent_path=os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import torch
import gym
import numpy as np
import datetime
from TD3.agent import TD3
from common.plot import plot_rewards
from common.utils import save_results,make_dir
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
class TD3Config:
def __init__(self) -> None:
self.algo = 'TD3'
self.env = 'Pendulum-v0'
self.seed = 0
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
self.algo = 'TD3' # 算法名称
self.env_name = 'Pendulum-v1' # 环境名称
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.train_eps = 600 # 训练的回合数
self.start_timestep = 25e3 # Time steps initial random policy is used
self.start_ep = 50 # Episodes initial random policy is used
self.epsilon_start = 50 # Episodes initial random policy is used
self.eval_freq = 10 # How often (episodes) we evaluate
self.train_eps = 600
self.max_timestep = 100000 # Max time steps to run environment
self.expl_noise = 0.1 # Std of Gaussian exploration noise
self.batch_size = 256 # Batch size for both actor and critic
self.gamma = 0.9 # gamma factor
self.lr = 0.0005 # Target network update rate
self.lr = 0.0005 # 学习率
self.policy_noise = 0.2 # Noise added to target policy during critic update
self.noise_clip = 0.3 # Range to clip target policy noise
self.policy_freq = 2 # Frequency of delayed policy updates
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class PlotConfig(TD3Config):
def __init__(self) -> None:
super().__init__()
self.result_path = curr_path+"/outputs/" + self.env_name + \
'/'+curr_time+'/results/' # 保存结果的路径
self.model_path = curr_path+"/outputs/" + self.env_name + \
'/'+curr_time+'/models/' # 保存模型的路径
self.save = True # 是否保存图片
# Runs policy for X episodes and returns average reward
# A fixed seed is used for the eval environment
@@ -57,8 +63,10 @@ def eval(env,agent, seed, eval_episodes=10):
return avg_reward
def train(cfg,env,agent):
rewards = []
ma_rewards = [] # moveing average reward
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(int(cfg.train_eps)):
ep_reward = 0
ep_timesteps = 0
@@ -66,7 +74,7 @@ def train(cfg,env,agent):
while not done:
ep_timesteps += 1
# Select action randomly or according to policy
if i_ep < cfg.start_ep:
if i_ep < cfg.epsilon_start:
action = env.action_space.sample()
else:
action = (
@@ -81,32 +89,34 @@ def train(cfg,env,agent):
state = next_state
ep_reward += reward
# Train agent after collecting sufficient data
if i_ep+1 >= cfg.start_ep:
if i_ep+1 >= cfg.epsilon_start:
agent.update()
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Step:{ep_timesteps}, Reward:{ep_reward:.3f}")
if (i_ep+1)%10 == 0:
print('回合:{}/{}, 奖励:{:.2f}'.format(i_ep+1, cfg.train_eps, ep_reward))
rewards.append(ep_reward)
# 计算滑动窗口的reward
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
ma_rewards.append(ep_reward)
print('完成训练!')
return rewards, ma_rewards
if __name__ == "__main__":
cfg = TD3Config()
env = gym.make(cfg.env)
env.seed(cfg.seed) # Set seeds
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
plot_cfg = PlotConfig()
env = gym.make(cfg.env_name)
env.seed(1) # 随机种子
torch.manual_seed(1)
np.random.seed(1)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
agent = TD3(state_dim,action_dim,max_action,cfg)
rewards,ma_rewards = train(cfg,env,agent)
make_dir(cfg.result_path,cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
make_dir(plot_cfg.result_path,plot_cfg.model_path)
agent.save(path=plot_cfg.model_path)
save_results(rewards,ma_rewards,tag='train',path=plot_cfg.result_path)
plot_rewards(rewards,ma_rewards,plot_cfg,tag="train")