update DQN
This commit is contained in:
@@ -5,7 +5,7 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:48:57
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-10-15 22:00:28
|
||||
LastEditTime: 2020-11-23 11:58:17
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
@@ -16,7 +16,7 @@ import argparse
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
import datetime
|
||||
import os
|
||||
from utils import save_results
|
||||
from utils import save_results,save_model
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
|
||||
@@ -53,7 +53,7 @@ def get_args():
|
||||
def train(cfg):
|
||||
print('Start to train ! \n')
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||||
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要
|
||||
env = gym.make('CartPole-v0')
|
||||
env.seed(1) # 设置env随机种子
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
@@ -95,10 +95,7 @@ def train(cfg):
|
||||
writer.close()
|
||||
print('Complete training!')
|
||||
''' 保存模型 '''
|
||||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
agent.save_model(SAVED_MODEL_PATH+'checkpoint.pth')
|
||||
print('model saved!')
|
||||
save_model(agent,model_path=SAVED_MODEL_PATH)
|
||||
'''存储reward等相关结果'''
|
||||
save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path=RESULT_PATH)
|
||||
|
||||
@@ -110,7 +107,7 @@ def eval(cfg, saved_model_path = SAVED_MODEL_PATH):
|
||||
env.seed(1) # 设置env随机种子
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,
|
||||
agent = DQN(n_states=n_states, n_actions=n_actions, device="cpu", gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,
|
||||
epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size)
|
||||
agent.load_model(saved_model_path+'checkpoint.pth')
|
||||
rewards = []
|
||||
|
||||
Reference in New Issue
Block a user