diff --git a/codes/dqn/.vscode/settings.json b/codes/dqn/.vscode/settings.json deleted file mode 100644 index be0f1ab..0000000 --- a/codes/dqn/.vscode/settings.json +++ /dev/null @@ -1,3 +0,0 @@ -{ - "python.pythonPath": "/Users/jj/anaconda3/envs/py37/bin/python" -} \ No newline at end of file diff --git a/codes/dqn/README.md b/codes/dqn/README.md index e0419b9..a8e141b 100644 --- a/codes/dqn/README.md +++ b/codes/dqn/README.md @@ -1,3 +1,8 @@ +## 思路 + +见[我的博客](https://blog.csdn.net/JohnJim0/article/details/109557173) +## 环境 + python 3.7.9 pytorch 1.6.0 @@ -6,6 +11,7 @@ tensorboard 2.3.0 torchvision 0.7.0 +## 使用 train: @@ -18,7 +24,12 @@ eval: ```python python main.py --train 0 ``` - +可视化: ```python tensorboard --logdir logs -``` \ No newline at end of file +``` + +## Torch知识 + +[with torch.no_grad()](https://www.jianshu.com/p/1cea017f5d11) + diff --git a/codes/dqn/agent.py b/codes/dqn/agent.py index 9ff8b28..1ad82df 100644 --- a/codes/dqn/agent.py +++ b/codes/dqn/agent.py @@ -5,7 +5,7 @@ @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:50:49 @LastEditor: John -LastEditTime: 2020-10-15 21:56:21 +LastEditTime: 2020-11-22 11:12:30 @Discription: @Environment: python 3.7.7 ''' @@ -24,11 +24,12 @@ from memory import ReplayBuffer from model import FCN class DQN: def __init__(self, n_states, n_actions, gamma=0.99, epsilon_start=0.9, epsilon_end=0.05, epsilon_decay=200, memory_capacity=10000, policy_lr=0.01, batch_size=128, device="cpu"): - self.actions_count = 0 + self.n_actions = n_actions # 总的动作个数 self.device = device # 设备,cpu或gpu等 - self.gamma = gamma + self.gamma = gamma # 奖励的折扣因子 # e-greedy策略相关参数 + self.actions_count = 0 # 用于epsilon的衰减计数 self.epsilon = 0 self.epsilon_start = epsilon_start self.epsilon_end = epsilon_end @@ -67,12 +68,11 @@ class DQN: action = random.randrange(self.n_actions) return action else: - with torch.no_grad(): + with torch.no_grad(): # 取消保存梯度 # 先转为张量便于丢给神经网络,state元素数据原本为float64 # 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价 state = torch.tensor( - [state], device='cpu', dtype=torch.float32) - # 如tensor([[-0.0798, -0.0079]], grad_fn=) + [state], device='cpu', dtype=torch.float32) # 如tensor([[-0.0798, -0.0079]], grad_fn=) q_value = self.target_net(state) # tensor.max(1)返回每行的最大值以及对应的下标, # 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0])) @@ -86,8 +86,8 @@ class DQN: # 从memory中随机采样transition state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample( self.batch_size) - # 转为张量 - # 例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]]) + '''转为张量 + 例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]])''' state_batch = torch.tensor( state_batch, device=self.device, dtype=torch.float) action_batch = torch.tensor(action_batch, device=self.device).unsqueeze( @@ -99,9 +99,8 @@ class DQN: done_batch = torch.tensor(np.float32( done_batch), device=self.device).unsqueeze(1) # 将bool转为float然后转为张量 - # 计算当前(s_t,a)对应的Q(s_t, a) - # 关于torch.gather,对于a=torch.Tensor([[1,2],[3,4]]) - # 那么a.gather(1,torch.Tensor([[0],[1]]))=torch.Tensor([[1],[3]]) + '''计算当前(s_t,a)对应的Q(s_t, a)''' + '''torch.gather:对于a=torch.Tensor([[1,2],[3,4]]),那么a.gather(1,torch.Tensor([[0],[1]]))=torch.Tensor([[1],[3]])''' q_values = self.policy_net(state_batch).gather( dim=1, index=action_batch) # 等价于self.forward # 计算所有next states的V(s_{t+1}),即通过target_net中选取reward最大的对应states @@ -119,6 +118,7 @@ class DQN: self.loss.backward() for param in self.policy_net.parameters(): # clip防止梯度爆炸 param.grad.data.clamp_(-1, 1) + self.optimizer.step() # 更新模型 def save_model(self,path): diff --git a/codes/dqn/main.py b/codes/dqn/main.py index 9bdc94d..9c6d76a 100644 --- a/codes/dqn/main.py +++ b/codes/dqn/main.py @@ -5,7 +5,7 @@ @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:48:57 @LastEditor: John -LastEditTime: 2020-10-15 22:00:28 +LastEditTime: 2020-11-23 11:58:17 @Discription: @Environment: python 3.7.7 ''' @@ -16,7 +16,7 @@ import argparse from torch.utils.tensorboard import SummaryWriter import datetime import os -from utils import save_results +from utils import save_results,save_model SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' @@ -53,7 +53,7 @@ def get_args(): def train(cfg): print('Start to train ! \n') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu - env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要 + env = gym.make('CartPole-v0') env.seed(1) # 设置env随机种子 n_states = env.observation_space.shape[0] n_actions = env.action_space.n @@ -95,10 +95,7 @@ def train(cfg): writer.close() print('Complete training!') ''' 保存模型 ''' - if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹 - os.mkdir(SAVED_MODEL_PATH) - agent.save_model(SAVED_MODEL_PATH+'checkpoint.pth') - print('model saved!') + save_model(agent,model_path=SAVED_MODEL_PATH) '''存储reward等相关结果''' save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path=RESULT_PATH) @@ -110,7 +107,7 @@ def eval(cfg, saved_model_path = SAVED_MODEL_PATH): env.seed(1) # 设置env随机种子 n_states = env.observation_space.shape[0] n_actions = env.action_space.n - agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start, + agent = DQN(n_states=n_states, n_actions=n_actions, device="cpu", gamma=cfg.gamma, epsilon_start=cfg.epsilon_start, epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size) agent.load_model(saved_model_path+'checkpoint.pth') rewards = [] diff --git a/codes/dqn/plot.py b/codes/dqn/plot.py index 2bc3e04..59680c2 100644 --- a/codes/dqn/plot.py +++ b/codes/dqn/plot.py @@ -5,7 +5,7 @@ @Email: johnjim0816@gmail.com @Date: 2020-06-11 16:30:09 @LastEditor: John -LastEditTime: 2020-10-15 22:01:50 +LastEditTime: 2020-11-23 13:48:31 @Discription: @Environment: python 3.7.7 ''' @@ -27,18 +27,6 @@ def plot(item,ylabel='rewards_train', save_fig = True): plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png") plt.show() -# def plot(item,ylabel='rewards'): -# -# df = pd.DataFrame(dict(time=np.arange(len(item)),value=item)) -# g = sns.relplot(x="time", y="value", kind="line", data=df) -# # g.fig.autofmt_xdate() -# # sns.lineplot(time=time, data=item, color="r", condition="behavior_cloning") -# # # sns.tsplot(time=time, data=x2, color="b", condition="dagger") -# # plt.ylabel("Reward") -# # plt.xlabel("Iteration Number") -# # plt.title("Imitation Learning") - - # plt.show() if __name__ == "__main__": output_path = os.path.split(os.path.abspath(__file__))[0]+"/result/" diff --git a/codes/dqn/utils.py b/codes/dqn/utils.py index 0c75408..9f8ca89 100644 --- a/codes/dqn/utils.py +++ b/codes/dqn/utils.py @@ -5,7 +5,7 @@ Author: John Email: johnjim0816@gmail.com Date: 2020-10-15 21:28:00 LastEditor: John -LastEditTime: 2020-10-15 21:50:30 +LastEditTime: 2020-10-30 16:56:55 Discription: Environment: ''' @@ -14,8 +14,17 @@ import numpy as np def save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path='./result'): + '''保存reward等结果 + ''' if not os.path.exists(result_path): # 检测是否存在文件夹 os.mkdir(result_path) np.save(result_path+'rewards_'+tag+'.npy', rewards) np.save(result_path+'moving_average_rewards_'+tag+'.npy', moving_average_rewards) - np.save(result_path+'steps_'+tag+'.npy',ep_steps ) \ No newline at end of file + np.save(result_path+'steps_'+tag+'.npy',ep_steps ) + print('results saved!') + +def save_model(agent,model_path='./saved_model'): + if not os.path.exists(model_path): # 检测是否存在文件夹 + os.mkdir(model_path) + agent.save_model(model_path+'checkpoint.pth') + print('model saved!') \ No newline at end of file