hot update DQN
This commit is contained in:
@@ -27,7 +27,7 @@ def get_args():
|
||||
parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor")
|
||||
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
|
||||
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
|
||||
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon")
|
||||
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon, the higher value, the slower decay")
|
||||
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
|
||||
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
|
||||
parser.add_argument('--batch_size',default=64,type=int)
|
||||
@@ -64,8 +64,8 @@ def env_agent_config(cfg):
|
||||
def train(cfg, env, agent):
|
||||
''' 训练
|
||||
'''
|
||||
print("start training!")
|
||||
print(f"Env: {cfg['env_name']}, Algo: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
print("Start training!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = []
|
||||
for i_ep in range(cfg["train_eps"]):
|
||||
@@ -89,17 +89,17 @@ def train(cfg, env, agent):
|
||||
rewards.append(ep_reward)
|
||||
if (i_ep + 1) % 10 == 0:
|
||||
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}: Epislon: {agent.epsilon:.3f}')
|
||||
print("finish training!")
|
||||
print("Finish training!")
|
||||
env.close()
|
||||
res_dic = {'episodes':range(len(rewards)),'rewards':rewards}
|
||||
return res_dic
|
||||
|
||||
def test(cfg, env, agent):
|
||||
print("start testing!")
|
||||
print(f"Env: {cfg.env_name}, Algo: {cfg.algo_name}, Device: {cfg.device}")
|
||||
print("Start testing!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = []
|
||||
for i_ep in range(cfg.test_eps):
|
||||
for i_ep in range(cfg['test_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
@@ -113,8 +113,8 @@ def test(cfg, env, agent):
|
||||
break
|
||||
steps.append(ep_step)
|
||||
rewards.append(ep_reward)
|
||||
print(f'Episode: {i_ep+1}/{cfg.test_eps},Reward: {ep_reward:.2f}')
|
||||
print("finish testing!")
|
||||
print(f"Episode: {i_ep+1}/{cfg['test_eps']},Reward: {ep_reward:.2f}")
|
||||
print("Finish testing!")
|
||||
env.close()
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user