update PolicyGradient
This commit is contained in:
52
codes/PolicyGradient/main.py
Normal file
52
codes/PolicyGradient/main.py
Normal file
@@ -0,0 +1,52 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-22 23:21:53
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-23 12:06:15
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
from itertools import count
|
||||
import torch
|
||||
from env import env_init
|
||||
from params import get_args
|
||||
from agent import PolicyGradient
|
||||
|
||||
def train(cfg):
|
||||
env,n_states,n_actions = env_init()
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||||
agent = PolicyGradient(n_states,device = device,lr = cfg.policy_lr)
|
||||
'''下面带pool都是存放的transition序列用于gradient'''
|
||||
state_pool = [] # 存放每batch_size个episode的state序列
|
||||
action_pool = []
|
||||
reward_pool = []
|
||||
for i_episode in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
for t in count():
|
||||
action = agent.choose_action(state) # 根据当前环境state选择action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
if done:
|
||||
reward = 0
|
||||
state_pool.append(state)
|
||||
action_pool.append(float(action))
|
||||
reward_pool.append(reward)
|
||||
state = next_state
|
||||
if done:
|
||||
print('Episode:', i_episode, ' Reward:', ep_reward)
|
||||
break
|
||||
# if i_episode % cfg.batch_size == 0:
|
||||
if i_episode > 0 and i_episode % 5 == 0:
|
||||
agent.update(reward_pool,state_pool,action_pool)
|
||||
state_pool = [] # 每个episode的state
|
||||
action_pool = []
|
||||
reward_pool = []
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
train(cfg)
|
||||
Reference in New Issue
Block a user