update PolicyGradient
This commit is contained in:
68
codes/PolicyGradient/agent.py
Normal file
68
codes/PolicyGradient/agent.py
Normal file
@@ -0,0 +1,68 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-22 23:27:44
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-23 12:05:03
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import torch
|
||||
from torch.distributions import Bernoulli
|
||||
from torch.autograd import Variable
|
||||
import numpy as np
|
||||
|
||||
from model import FCN
|
||||
|
||||
class PolicyGradient:
|
||||
|
||||
def __init__(self, n_states,device='cpu',gamma = 0.99,lr = 0.01,batch_size=5):
|
||||
self.gamma = gamma
|
||||
self.policy_net = FCN(n_states)
|
||||
self.optimizer = torch.optim.RMSprop(self.policy_net.parameters(), lr=lr)
|
||||
self.batch_size = batch_size
|
||||
|
||||
def choose_action(self,state):
|
||||
|
||||
state = torch.from_numpy(state).float()
|
||||
state = Variable(state)
|
||||
probs = self.policy_net(state)
|
||||
m = Bernoulli(probs)
|
||||
action = m.sample()
|
||||
|
||||
action = action.data.numpy().astype(int)[0] # 转为标量
|
||||
return action
|
||||
|
||||
def update(self,reward_pool,state_pool,action_pool):
|
||||
# Discount reward
|
||||
running_add = 0
|
||||
for i in reversed(range(len(reward_pool))):
|
||||
if reward_pool[i] == 0:
|
||||
running_add = 0
|
||||
else:
|
||||
running_add = running_add * self.gamma + reward_pool[i]
|
||||
reward_pool[i] = running_add
|
||||
|
||||
# Normalize reward
|
||||
reward_mean = np.mean(reward_pool)
|
||||
reward_std = np.std(reward_pool)
|
||||
for i in range(len(reward_pool)):
|
||||
reward_pool[i] = (reward_pool[i] - reward_mean) / reward_std
|
||||
|
||||
# Gradient Desent
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
for i in range(len(reward_pool)):
|
||||
state = state_pool[i]
|
||||
action = Variable(torch.FloatTensor([action_pool[i]]))
|
||||
reward = reward_pool[i]
|
||||
|
||||
state = Variable(torch.from_numpy(state).float())
|
||||
probs = self.policy_net(state)
|
||||
m = Bernoulli(probs)
|
||||
loss = -m.log_prob(action) * reward # Negtive score function x reward
|
||||
# print(loss)
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
Reference in New Issue
Block a user