Merge branch 'master' of github.com:datawhalechina/easy-rl

This commit is contained in:
qiwang067
2021-10-09 21:48:33 +08:00
19 changed files with 192 additions and 25 deletions

167
codes/GAE/task0_train.py Normal file
View File

@@ -0,0 +1,167 @@
import math
import random
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
import matplotlib.pyplot as plt
import seaborn as sns
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加父路径到系统路径sys.path
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
from common.multiprocessing_env import SubprocVecEnv
num_envs = 16
env_name = "Pendulum-v0"
def make_env():
def _thunk():
env = gym.make(env_name)
return env
return _thunk
envs = [make_env() for i in range(num_envs)]
envs = SubprocVecEnv(envs)
env = gym.make(env_name)
def init_weights(m):
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0., std=0.1)
nn.init.constant_(m.bias, 0.1)
class ActorCritic(nn.Module):
def __init__(self, num_inputs, num_outputs, hidden_size, std=0.0):
super(ActorCritic, self).__init__()
self.critic = nn.Sequential(
nn.Linear(num_inputs, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, 1)
)
self.actor = nn.Sequential(
nn.Linear(num_inputs, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, num_outputs),
)
self.log_std = nn.Parameter(torch.ones(1, num_outputs) * std)
self.apply(init_weights)
def forward(self, x):
value = self.critic(x)
mu = self.actor(x)
std = self.log_std.exp().expand_as(mu)
dist = Normal(mu, std)
return dist, value
def plot(frame_idx, rewards):
plt.figure(figsize=(20,5))
plt.subplot(131)
plt.title('frame %s. reward: %s' % (frame_idx, rewards[-1]))
plt.plot(rewards)
plt.show()
def test_env(vis=False):
state = env.reset()
if vis: env.render()
done = False
total_reward = 0
while not done:
state = torch.FloatTensor(state).unsqueeze(0).to(device)
dist, _ = model(state)
next_state, reward, done, _ = env.step(dist.sample().cpu().numpy()[0])
state = next_state
if vis: env.render()
total_reward += reward
return total_reward
def compute_gae(next_value, rewards, masks, values, gamma=0.99, tau=0.95):
values = values + [next_value]
gae = 0
returns = []
for step in reversed(range(len(rewards))):
delta = rewards[step] + gamma * values[step + 1] * masks[step] - values[step]
gae = delta + gamma * tau * masks[step] * gae
returns.insert(0, gae + values[step])
return returns
num_inputs = envs.observation_space.shape[0]
num_outputs = envs.action_space.shape[0]
#Hyper params:
hidden_size = 256
lr = 3e-2
num_steps = 20
model = ActorCritic(num_inputs, num_outputs, hidden_size).to(device)
optimizer = optim.Adam(model.parameters())
max_frames = 100000
frame_idx = 0
test_rewards = []
state = envs.reset()
while frame_idx < max_frames:
log_probs = []
values = []
rewards = []
masks = []
entropy = 0
for _ in range(num_steps):
state = torch.FloatTensor(state).to(device)
dist, value = model(state)
action = dist.sample()
next_state, reward, done, _ = envs.step(action.cpu().numpy())
log_prob = dist.log_prob(action)
entropy += dist.entropy().mean()
log_probs.append(log_prob)
values.append(value)
rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device))
masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device))
state = next_state
frame_idx += 1
if frame_idx % 1000 == 0:
test_rewards.append(np.mean([test_env() for _ in range(10)]))
print(test_rewards[-1])
# plot(frame_idx, test_rewards)
next_state = torch.FloatTensor(next_state).to(device)
_, next_value = model(next_state)
returns = compute_gae(next_value, rewards, masks, values)
log_probs = torch.cat(log_probs)
returns = torch.cat(returns).detach()
values = torch.cat(values)
advantage = returns - values
actor_loss = -(log_probs * advantage.detach()).mean()
critic_loss = advantage.pow(2).mean()
loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy
optimizer.zero_grad()
loss.backward()
optimizer.step()

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-23 15:17:42
LastEditor: John
LastEditTime: 2021-04-28 10:11:09
LastEditTime: 2021-09-26 22:02:00
Discription:
Environment:
'''
@@ -41,10 +41,8 @@ class PPO:
def update(self):
for _ in range(self.n_epochs):
state_arr, action_arr, old_prob_arr, vals_arr,\
reward_arr, dones_arr, batches = \
self.memory.sample()
values = vals_arr
state_arr, action_arr, old_prob_arr, vals_arr,reward_arr, dones_arr, batches = self.memory.sample()
values = vals_arr[:]
### compute advantage ###
advantage = np.zeros(len(reward_arr), dtype=np.float32)
for t in range(len(reward_arr)-1):

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-23 15:30:46
LastEditor: John
LastEditTime: 2021-03-23 15:30:55
LastEditTime: 2021-09-26 22:00:07
Discription:
Environment:
'''
@@ -24,13 +24,8 @@ class PPOMemory:
indices = np.arange(len(self.states), dtype=np.int64)
np.random.shuffle(indices)
batches = [indices[i:i+self.batch_size] for i in batch_step]
return np.array(self.states),\
np.array(self.actions),\
np.array(self.probs),\
np.array(self.vals),\
np.array(self.rewards),\
np.array(self.dones),\
batches
return np.array(self.states),np.array(self.actions),np.array(self.probs),\
np.array(self.vals),np.array(self.rewards),np.array(self.dones),batches
def push(self, state, action, probs, vals, reward, done):
self.states.append(state)

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-22 16:18:10
LastEditor: John
LastEditTime: 2021-05-06 00:43:36
LastEditTime: 2021-09-26 22:05:00
Discription:
Environment:
'''
@@ -17,6 +17,7 @@ sys.path.append(parent_path) # add current terminal path to sys.path
import gym
import torch
import datetime
import tqdm
from PPO.agent import PPO
from common.plot import plot_rewards
from common.utils import save_results,make_dir
@@ -51,7 +52,7 @@ def env_agent_config(cfg,seed=1):
return env,agent
def train(cfg,env,agent):
print('Start to train !')
print('开始训练!')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards= []
ma_rewards = [] # moving average rewards
@@ -75,7 +76,7 @@ def train(cfg,env,agent):
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}")
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}")
print('Complete training')
return rewards,ma_rewards

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-09-20 00:32:59
LastEditTime: 2021-09-23 12:22:58
Discription:
Environment:
'''
@@ -34,7 +34,7 @@ class QlearningConfig:
self.train_eps = 400 # 训练的回合数
self.eval_eps = 30 # 测试的回合数
self.gamma = 0.9 # reward的衰减率
self.epsilon_start = 0.99 # e-greedy策略中初始epsilon
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 300 # e-greedy策略中epsilon的衰减率
self.lr = 0.1 # 学习率
@@ -53,14 +53,15 @@ def env_agent_config(cfg,seed=1):
def train(cfg,env,agent):
print('开始训练!')
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
rewards = []
ma_rewards = [] # 滑动平均奖励
rewards = [] # 记录奖励
ma_rewards = [] # 记录滑动平均奖励
for i_ep in range(cfg.train_eps):
ep_reward = 0 # 记录每个回合的奖励
state = env.reset() # 重置环境,即开始新的回合
while True:
action = agent.choose_action(state) # 根据算法选择一个动作
next_state, reward, done, _ = env.step(action) # 与环境进行一次动作交互
print(reward)
agent.update(state, action, reward, next_state, done) # Q学习算法更新
state = next_state # 更新状态
ep_reward += reward
@@ -78,6 +79,8 @@ def train(cfg,env,agent):
def eval(cfg,env,agent):
print('开始测试!')
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
for item in agent.Q_table.items():
print(item)
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 滑动平均的奖励
for i_ep in range(cfg.eval_eps):
@@ -86,7 +89,7 @@ def eval(cfg,env,agent):
while True:
action = agent.predict(state) # 根据算法选择一个动作
next_state, reward, done, _ = env.step(action) # 与环境进行一个交互
state = next_state # 存储上一个观察值
state = next_state # 更新状态
ep_reward += reward
if done:
break
@@ -103,10 +106,12 @@ if __name__ == "__main__":
cfg = QlearningConfig()
# 训练
env,agent = env_agent_config(cfg,seed=1)
env,agent = env_agent_config(cfg,seed=0)
rewards,ma_rewards = train(cfg,env,agent)
make_dir(cfg.result_path,cfg.model_path) # 创建文件夹
agent.save(path=cfg.model_path) # 保存模型
for item in agent.Q_table.items():
print(item)
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path) # 保存结果
plot_rewards_cn(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
@@ -114,6 +119,7 @@ if __name__ == "__main__":
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path) # 加载模型
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards_cn(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-10-07 20:57:11
LastEditor: John
LastEditTime: 2021-09-19 23:00:36
LastEditTime: 2021-09-23 12:23:01
Discription:
Environment:
'''

View File

@@ -77,7 +77,7 @@
答:
1. 生成policy上的差异前者随机,后者确定。Value-Base中的 action-value估计值最终会收敛到对应的true values通常是不同的有限数可以转化为0到1之间的概率因此通常会获得一个确定的策略deterministic policy而Policy-Based不会收敛到一个确定性的值另外他们会趋向于生成optimal stochastic policy。如果optimal policy是deterministic的那么optimal action对应的性能函数将远大于suboptimal actions对应的性能函数性能函数的大小代表了概率的大小。
1. 生成policy上的差异前者确定,后者随机。Value-Base中的 action-value估计值最终会收敛到对应的true values通常是不同的有限数可以转化为0到1之间的概率因此通常会获得一个确定的策略deterministic policy而Policy-Based不会收敛到一个确定性的值另外他们会趋向于生成optimal stochastic policy。如果optimal policy是deterministic的那么optimal action对应的性能函数将远大于suboptimal actions对应的性能函数性能函数的大小代表了概率的大小。
2. 动作空间是否连续前者离散后者连续。Value-Base对于连续动作空间问题虽然可以将动作空间离散化处理但离散间距的选取不易确定。过大的离散间距会导致算法取不到最优action会在这附近徘徊过小的离散间距会使得action的维度增大会和高维度动作空间一样导致维度灾难影响算法的速度而Policy-Based适用于连续的动作空间在连续的动作空间中可以不用计算每个动作的概率而是通过Gaussian distribution 正态分布选择action。
3. value-based例如Q-learning是通过求解最优值函数间接的求解最优策略policy-based例如REINFORCEMonte-Carlo Policy Gradient等方法直接将策略参数化通过策略搜索策略梯度或者进化方法来更新策略的参数以最大化回报。基于值函数的方法不易扩展到连续动作空间并且当同时采用非线性近似、自举和离策略时会有收敛性问题。策略梯度具有良好的收敛性证明。
4. 补充:对于值迭代和策略迭代:策略迭代。它有两个循环,一个是在策略估计的时候,为了求当前策略的值函数需要迭代很多次。另外一个是外面的大循环,就是策略评估,策略提升这个循环。值迭代算法则是一步到位,直接估计最优值函数,因此没有策略提升环节。