123 lines
4.1 KiB
Python
123 lines
4.1 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: John
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2021-03-22 16:18:10
|
||
LastEditor: John
|
||
LastEditTime: 2021-09-26 22:05:00
|
||
Discription:
|
||
Environment:
|
||
'''
|
||
import sys,os
|
||
curr_path = os.path.dirname(__file__)
|
||
parent_path=os.path.dirname(curr_path)
|
||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||
|
||
import gym
|
||
import torch
|
||
import datetime
|
||
import tqdm
|
||
from PPO.agent import PPO
|
||
from common.plot import plot_rewards
|
||
from common.utils import save_results,make_dir
|
||
|
||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||
|
||
class PPOConfig:
|
||
def __init__(self) -> None:
|
||
self.env = 'CartPole-v0'
|
||
self.algo = 'PPO'
|
||
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
|
||
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
|
||
self.train_eps = 200 # max training episodes
|
||
self.eval_eps = 50
|
||
self.batch_size = 5
|
||
self.gamma=0.99
|
||
self.n_epochs = 4
|
||
self.actor_lr = 0.0003
|
||
self.critic_lr = 0.0003
|
||
self.gae_lambda=0.95
|
||
self.policy_clip=0.2
|
||
self.hidden_dim = 256
|
||
self.update_fre = 20 # frequency of agent update
|
||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu
|
||
|
||
def env_agent_config(cfg,seed=1):
|
||
env = gym.make(cfg.env)
|
||
env.seed(seed)
|
||
state_dim = env.observation_space.shape[0]
|
||
action_dim = env.action_space.n
|
||
agent = PPO(state_dim,action_dim,cfg)
|
||
return env,agent
|
||
|
||
def train(cfg,env,agent):
|
||
print('开始训练!')
|
||
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
|
||
rewards= []
|
||
ma_rewards = [] # moving average rewards
|
||
running_steps = 0
|
||
for i_ep in range(cfg.train_eps):
|
||
state = env.reset()
|
||
done = False
|
||
ep_reward = 0
|
||
while not done:
|
||
action, prob, val = agent.choose_action(state)
|
||
state_, reward, done, _ = env.step(action)
|
||
running_steps += 1
|
||
ep_reward += reward
|
||
agent.memory.push(state, action, prob, val, reward, done)
|
||
if running_steps % cfg.update_fre == 0:
|
||
agent.update()
|
||
state = state_
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(
|
||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}")
|
||
print('Complete training!')
|
||
return rewards,ma_rewards
|
||
|
||
def eval(cfg,env,agent):
|
||
print('Start to eval !')
|
||
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
|
||
rewards= []
|
||
ma_rewards = [] # moving average rewards
|
||
for i_ep in range(cfg.eval_eps):
|
||
state = env.reset()
|
||
done = False
|
||
ep_reward = 0
|
||
while not done:
|
||
action, prob, val = agent.choose_action(state)
|
||
state_, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
state = state_
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(
|
||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}")
|
||
print('Complete evaling!')
|
||
return rewards,ma_rewards
|
||
|
||
if __name__ == '__main__':
|
||
cfg = PPOConfig()
|
||
# train
|
||
env,agent = env_agent_config(cfg,seed=1)
|
||
rewards, ma_rewards = train(cfg, env, agent)
|
||
make_dir(cfg.result_path, cfg.model_path)
|
||
agent.save(path=cfg.model_path)
|
||
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
|
||
plot_rewards(rewards, ma_rewards, tag="train",
|
||
algo=cfg.algo, path=cfg.result_path)
|
||
# eval
|
||
env,agent = env_agent_config(cfg,seed=10)
|
||
agent.load(path=cfg.model_path)
|
||
rewards,ma_rewards = eval(cfg,env,agent)
|
||
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
||
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|