update codes
This commit is contained in:
@@ -1,127 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:48:57
|
||||
@LastEditor: John
|
||||
LastEditTime: 2021-09-15 15:34:13
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加父路径到系统路径sys.path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
|
||||
from common.utils import save_results, make_dir
|
||||
from common.plot import plot_rewards,plot_rewards_cn
|
||||
from DQN.agent import DQN
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
|
||||
class DQNConfig:
|
||||
def __init__(self):
|
||||
self.algo = "DQN" # 算法名称
|
||||
self.env = 'CartPole-v0' # 环境名称
|
||||
self.result_path = curr_path+"/outputs/" + self.env + \
|
||||
'/'+curr_time+'/results/' # 保存结果的路径
|
||||
self.model_path = curr_path+"/outputs/" + self.env + \
|
||||
'/'+curr_time+'/models/' # 保存模型的路径
|
||||
self.train_eps = 200 # 训练的回合数
|
||||
self.eval_eps = 30 # 测试的回合数
|
||||
self.gamma = 0.95 # 强化学习中的折扣因子
|
||||
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
|
||||
self.lr = 0.0001 # 学习率
|
||||
self.memory_capacity = 100000 # 经验回放的容量
|
||||
self.batch_size = 64 # mini-batch SGD中的批量大小
|
||||
self.target_update = 4 # 目标网络的更新频率
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.hidden_dim = 256 # hidden size of net
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = gym.make(cfg.env)
|
||||
env.seed(seed)
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
agent = DQN(n_states,n_actions,cfg)
|
||||
return env,agent
|
||||
|
||||
def train(cfg, env, agent):
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录奖励
|
||||
ma_rewards = [] # 记录滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
while True:
|
||||
action = agent.choose_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, reward, next_state, done)
|
||||
state = next_state
|
||||
agent.update()
|
||||
if done:
|
||||
break
|
||||
if (i_ep+1) % cfg.target_update == 0:
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
if (i_ep+1)%10 == 0:
|
||||
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
|
||||
rewards.append(ep_reward)
|
||||
# save ma_rewards
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('完成训练!')
|
||||
return rewards, ma_rewards
|
||||
|
||||
def eval(cfg,env,agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||
rewards = []
|
||||
ma_rewards = [] # moving average rewards
|
||||
for i_ep in range(cfg.eval_eps):
|
||||
ep_reward = 0 # reward per episode
|
||||
state = env.reset()
|
||||
while True:
|
||||
action = agent.predict(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f"回合:{i_ep+1}/{cfg.eval_eps}, 奖励:{ep_reward:.1f}")
|
||||
print('完成测试!')
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = DQNConfig()
|
||||
# 训练
|
||||
env,agent = env_agent_config(cfg,seed=1)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path)
|
||||
agent.save(path=cfg.model_path)
|
||||
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
|
||||
plot_rewards_cn(rewards, ma_rewards, tag="train",
|
||||
algo=cfg.algo, path=cfg.result_path)
|
||||
# 测试
|
||||
env,agent = env_agent_config(cfg,seed=10)
|
||||
agent.load(path=cfg.model_path)
|
||||
rewards,ma_rewards = eval(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
||||
plot_rewards_cn(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
Reference in New Issue
Block a user