update codes
@@ -12,9 +12,6 @@ LastEditTime: 2021-09-15 13:35:36
|
||||
'''off-policy
|
||||
'''
|
||||
|
||||
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
@@ -24,9 +21,9 @@ import numpy as np
|
||||
from common.memory import ReplayBuffer
|
||||
from common.model import MLP
|
||||
class DQN:
|
||||
def __init__(self, state_dim, action_dim, cfg):
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
|
||||
self.action_dim = action_dim # 总的动作个数
|
||||
self.n_actions = n_actions # 总的动作个数
|
||||
self.device = cfg.device # 设备,cpu或gpu等
|
||||
self.gamma = cfg.gamma # 奖励的折扣因子
|
||||
# e-greedy策略相关参数
|
||||
@@ -35,15 +32,15 @@ class DQN:
|
||||
(cfg.epsilon_start - cfg.epsilon_end) * \
|
||||
math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity)
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity) # 经验回放
|
||||
|
||||
def choose_action(self, state):
|
||||
'''选择动作
|
||||
''' 选择动作
|
||||
'''
|
||||
self.frame_idx += 1
|
||||
if random.random() > self.epsilon(self.frame_idx):
|
||||
@@ -52,13 +49,7 @@ class DQN:
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # 选择Q值最大的动作
|
||||
else:
|
||||
action = random.randrange(self.action_dim)
|
||||
return action
|
||||
def predict(self,state):
|
||||
with torch.no_grad():
|
||||
state = torch.tensor([state], device=self.device, dtype=torch.float32)
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item()
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略
|
||||
@@ -67,16 +58,11 @@ class DQN:
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
|
||||
self.batch_size)
|
||||
# 转为张量
|
||||
state_batch = torch.tensor(
|
||||
state_batch, device=self.device, dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(
|
||||
1)
|
||||
reward_batch = torch.tensor(
|
||||
reward_batch, device=self.device, dtype=torch.float)
|
||||
next_state_batch = torch.tensor(
|
||||
next_state_batch, device=self.device, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(
|
||||
done_batch), device=self.device)
|
||||
state_batch = torch.tensor(state_batch, device=self.device, dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1)
|
||||
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float)
|
||||
next_state_batch = torch.tensor(next_state_batch, device=self.device, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(done_batch), device=self.device)
|
||||
q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch) # 计算当前状态(s_t,a)对应的Q(s_t, a)
|
||||
next_q_values = self.target_net(next_state_batch).max(1)[0].detach() # 计算下一时刻的状态(s_t_,a)对应的Q值
|
||||
# 计算期望的Q值,对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward
|
||||
|
Before Width: | Height: | Size: 36 KiB After Width: | Height: | Size: 36 KiB |
|
Before Width: | Height: | Size: 76 KiB After Width: | Height: | Size: 76 KiB |
|
Before Width: | Height: | Size: 58 KiB After Width: | Height: | Size: 58 KiB |
|
Before Width: | Height: | Size: 37 KiB After Width: | Height: | Size: 37 KiB |
|
Before Width: | Height: | Size: 325 KiB After Width: | Height: | Size: 325 KiB |
|
After Width: | Height: | Size: 27 KiB |
|
After Width: | Height: | Size: 36 KiB |
|
After Width: | Height: | Size: 27 KiB |
|
After Width: | Height: | Size: 40 KiB |
379
codes/DQN-series/DQN/task0_train.ipynb
Normal file
@@ -19,19 +19,14 @@ import torch
|
||||
import datetime
|
||||
|
||||
from common.utils import save_results, make_dir
|
||||
from common.plot import plot_rewards,plot_rewards_cn
|
||||
from common.plot import plot_rewards
|
||||
from DQN.agent import DQN
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
|
||||
class DQNConfig:
|
||||
def __init__(self):
|
||||
self.algo = "DQN" # 算法名称
|
||||
self.env = 'CartPole-v0' # 环境名称
|
||||
self.result_path = curr_path+"/outputs/" + self.env + \
|
||||
'/'+curr_time+'/results/' # 保存结果的路径
|
||||
self.model_path = curr_path+"/outputs/" + self.env + \
|
||||
'/'+curr_time+'/models/' # 保存模型的路径
|
||||
self.train_eps = 200 # 训练的回合数
|
||||
self.eval_eps = 30 # 测试的回合数
|
||||
self.gamma = 0.95 # 强化学习中的折扣因子
|
||||
@@ -42,42 +37,53 @@ class DQNConfig:
|
||||
self.memory_capacity = 100000 # 经验回放的容量
|
||||
self.batch_size = 64 # mini-batch SGD中的批量大小
|
||||
self.target_update = 4 # 目标网络的更新频率
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.hidden_dim = 256 # hidden size of net
|
||||
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.hidden_dim = 256 # 网络隐藏层
|
||||
class PlotConfig:
|
||||
def __init__(self) -> None:
|
||||
self.algo = "DQN" # 算法名称
|
||||
self.env = 'CartPole-v0' # 环境名称
|
||||
self.result_path = curr_path+"/outputs/" + self.env + \
|
||||
'/'+curr_time+'/results/' # 保存结果的路径
|
||||
self.model_path = curr_path+"/outputs/" + self.env + \
|
||||
'/'+curr_time+'/models/' # 保存模型的路径
|
||||
self.save = True # 是否保存图片
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = gym.make(cfg.env)
|
||||
env.seed(seed)
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
agent = DQN(n_states,n_actions,cfg)
|
||||
''' 创建环境和智能体
|
||||
'''
|
||||
env = gym.make(cfg.env) # 创建环境
|
||||
env.seed(seed) # 设置随机种子
|
||||
n_states = env.observation_space.shape[0] # 状态数
|
||||
n_actions = env.action_space.n # 动作数
|
||||
agent = DQN(n_states,n_actions,cfg) # 创建智能体
|
||||
return env,agent
|
||||
|
||||
def train(cfg, env, agent):
|
||||
''' 训练
|
||||
'''
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录奖励
|
||||
ma_rewards = [] # 记录滑动平均奖励
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
while True:
|
||||
action = agent.choose_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, reward, next_state, done)
|
||||
state = next_state
|
||||
agent.update()
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
agent.memory.push(state, action, reward, next_state, done) # 保存transition
|
||||
state = next_state # 更新下一个状态
|
||||
agent.update() # 更新智能体
|
||||
ep_reward += reward # 累加奖励
|
||||
if done:
|
||||
break
|
||||
if (i_ep+1) % cfg.target_update == 0:
|
||||
if (i_ep+1) % cfg.target_update == 0: # 智能体目标网络更新
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
if (i_ep+1)%10 == 0:
|
||||
if (i_ep+1)%10 == 0:
|
||||
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
|
||||
rewards.append(ep_reward)
|
||||
# save ma_rewards
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
@@ -88,16 +94,19 @@ def train(cfg, env, agent):
|
||||
def eval(cfg,env,agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||
rewards = []
|
||||
ma_rewards = [] # moving average rewards
|
||||
# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0
|
||||
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
|
||||
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.eval_eps):
|
||||
ep_reward = 0 # reward per episode
|
||||
state = env.reset()
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
while True:
|
||||
action = agent.predict(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
state = next_state # 更新下一个状态
|
||||
ep_reward += reward # 累加奖励
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
@@ -111,17 +120,17 @@ def eval(cfg,env,agent):
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = DQNConfig()
|
||||
plot_cfg = PlotConfig()
|
||||
# 训练
|
||||
env,agent = env_agent_config(cfg,seed=1)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path)
|
||||
agent.save(path=cfg.model_path)
|
||||
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
|
||||
plot_rewards_cn(rewards, ma_rewards, tag="train",
|
||||
algo=cfg.algo, path=cfg.result_path)
|
||||
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||
agent.save(path=plot_cfg.model_path) # 保存模型
|
||||
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
|
||||
# 测试
|
||||
env,agent = env_agent_config(cfg,seed=10)
|
||||
agent.load(path=cfg.model_path)
|
||||
agent.load(path=plot_cfg.model_path) # 导入模型
|
||||
rewards,ma_rewards = eval(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
||||
plot_rewards_cn(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards,ma_rewards, plot_cfg, tag="eval") # 画出结果
|
||||
|
Before Width: | Height: | Size: 17 KiB After Width: | Height: | Size: 17 KiB |
|
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 24 KiB |
|
Before Width: | Height: | Size: 105 KiB After Width: | Height: | Size: 105 KiB |
|
Before Width: | Height: | Size: 74 KiB After Width: | Height: | Size: 74 KiB |
|
Before Width: | Height: | Size: 185 KiB After Width: | Height: | Size: 185 KiB |
|
Before Width: | Height: | Size: 75 KiB After Width: | Height: | Size: 75 KiB |
|
Before Width: | Height: | Size: 47 KiB After Width: | Height: | Size: 47 KiB |
|
Before Width: | Height: | Size: 57 KiB After Width: | Height: | Size: 57 KiB |
|
After Width: | Height: | Size: 121 KiB |
418
codes/DQN-series/DuelingDQN/task0_train.ipynb
Normal file
|
Before Width: | Height: | Size: 112 KiB After Width: | Height: | Size: 112 KiB |
|
Before Width: | Height: | Size: 311 KiB After Width: | Height: | Size: 311 KiB |
|
Before Width: | Height: | Size: 73 KiB After Width: | Height: | Size: 73 KiB |
|
Before Width: | Height: | Size: 21 KiB After Width: | Height: | Size: 21 KiB |
|
Before Width: | Height: | Size: 62 KiB After Width: | Height: | Size: 62 KiB |
25
codes/DQN-series/NoisyDQN/task0_train.ipynb
Normal file
@@ -0,0 +1,25 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"from pathlib import Path\n",
|
||||
"curr_path = str(Path().absolute()) # 当前路径\n",
|
||||
"parent_path = str(Path().absolute().parent) # 父路径\n",
|
||||
"sys.path.append(parent_path) # 添加路径到系统路径"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
3
codes/DQN-series/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
|
||||
本目录下汇总了基础的DQN及其变种或升级,如下
|
||||
|
||||
|
Before Width: | Height: | Size: 31 KiB |
|
Before Width: | Height: | Size: 40 KiB |
|
Before Width: | Height: | Size: 34 KiB |
|
Before Width: | Height: | Size: 45 KiB |
@@ -100,7 +100,7 @@ def eval(cfg,env,agent):
|
||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}")
|
||||
print(f"Episode:{i_ep+1}/{cfg.eval_eps}, Reward:{ep_reward:.3f}")
|
||||
print('Complete evaling!')
|
||||
return rewards,ma_rewards
|
||||
|
||||
|
||||
@@ -8,12 +8,16 @@ Policy-based方法是强化学习中与Value-based(比如Q-learning)相对的方
|
||||
|
||||
结合REINFORCE原理,其伪代码如下:
|
||||
|
||||
<img src="assets/image-20211016004808604.png" alt="image-20211016004808604" style="zoom:50%;" />
|
||||
|
||||
https://pytorch.org/docs/stable/distributions.html
|
||||
|
||||
加负号的原因是,在公式中应该是实现的梯度上升算法,而loss一般使用随机梯度下降的,所以加个负号保持一致性。
|
||||
|
||||

|
||||
|
||||
## 实现
|
||||
|
||||
|
||||
|
||||
## 参考
|
||||
|
||||
[REINFORCE和Reparameterization Trick](https://blog.csdn.net/JohnJim0/article/details/110230703)
|
||||
|
||||
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-22 23:27:44
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-05-05 17:33:10
|
||||
LastEditTime: 2021-10-16 00:43:52
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -56,7 +56,6 @@ class PolicyGradient:
|
||||
state = state_pool[i]
|
||||
action = Variable(torch.FloatTensor([action_pool[i]]))
|
||||
reward = reward_pool[i]
|
||||
|
||||
state = Variable(torch.from_numpy(state).float())
|
||||
probs = self.policy_net(state)
|
||||
m = Bernoulli(probs)
|
||||
|
||||
BIN
codes/PolicyGradient/assets/image-20211016004808604.png
Normal file
|
After Width: | Height: | Size: 208 KiB |
@@ -5,14 +5,14 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-22 23:21:53
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-05-05 17:35:20
|
||||
LastEditTime: 2021-10-16 00:34:13
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path = os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加父路径到系统路径sys.path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
@@ -23,21 +23,20 @@ from PolicyGradient.agent import PolicyGradient
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results,make_dir
|
||||
|
||||
curr_time = datetime.datetime.now().strftime(
|
||||
"%Y%m%d-%H%M%S") # obtain current time
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
|
||||
class PGConfig:
|
||||
def __init__(self):
|
||||
self.algo = "PolicyGradient" # name of algo
|
||||
self.env = 'CartPole-v0'
|
||||
self.algo = "PolicyGradient" # 算法名称
|
||||
self.env = 'CartPole-v0' # 环境名称
|
||||
self.result_path = curr_path+"/outputs/" + self.env + \
|
||||
'/'+curr_time+'/results/' # path to save results
|
||||
'/'+curr_time+'/results/' # 保存结果的路径
|
||||
self.model_path = curr_path+"/outputs/" + self.env + \
|
||||
'/'+curr_time+'/models/' # path to save models
|
||||
self.train_eps = 300 # 训练的episode数目
|
||||
self.eval_eps = 50
|
||||
'/'+curr_time+'/models/' # 保存模型的路径
|
||||
self.train_eps = 300 # 训练的回合数
|
||||
self.eval_eps = 30 # 测试的回合数
|
||||
self.batch_size = 8
|
||||
self.lr = 0.01 # learning rate
|
||||
self.lr = 0.01 # 学习率
|
||||
self.gamma = 0.99
|
||||
self.hidden_dim = 36 # dimmension of hidden layer
|
||||
self.device = torch.device(
|
||||
@@ -59,7 +58,7 @@ def train(cfg,env,agent):
|
||||
reward_pool = []
|
||||
rewards = []
|
||||
ma_rewards = []
|
||||
for i_episode in range(cfg.train_eps):
|
||||
for i_ep in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
for _ in count():
|
||||
@@ -73,9 +72,9 @@ def train(cfg,env,agent):
|
||||
reward_pool.append(reward)
|
||||
state = next_state
|
||||
if done:
|
||||
print('Episode:', i_episode, ' Reward:', ep_reward)
|
||||
print('Episode:', i_ep, ' Reward:', ep_reward)
|
||||
break
|
||||
if i_episode > 0 and i_episode % cfg.batch_size == 0:
|
||||
if i_ep > 0 and i_ep % cfg.batch_size == 0:
|
||||
agent.update(reward_pool,state_pool,action_pool)
|
||||
state_pool = [] # 每个episode的state
|
||||
action_pool = []
|
||||
@@ -95,7 +94,7 @@ def eval(cfg,env,agent):
|
||||
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
|
||||
rewards = []
|
||||
ma_rewards = []
|
||||
for i_episode in range(cfg.eval_eps):
|
||||
for i_ep in range(cfg.eval_eps):
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
for _ in count():
|
||||
@@ -106,7 +105,7 @@ def eval(cfg,env,agent):
|
||||
reward = 0
|
||||
state = next_state
|
||||
if done:
|
||||
print('Episode:', i_episode, ' Reward:', ep_reward)
|
||||
print('Episode:', i_ep, ' Reward:', ep_reward)
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
@@ -116,6 +115,7 @@ def eval(cfg,env,agent):
|
||||
ma_rewards.append(ep_reward)
|
||||
print('complete evaling!')
|
||||
return rewards, ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = PGConfig()
|
||||
|
||||
|
||||
@@ -18,14 +18,14 @@
|
||||
|
||||
## 运行环境
|
||||
|
||||
python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.19.0
|
||||
python 3.7、pytorch 1.6.0-1.8.1、gym 0.17.0-0.19.0
|
||||
|
||||
## 使用说明
|
||||
|
||||
运行带有```train```的py文件或ipynb文件进行训练,如果前面带有```task```如```task0_train.py```,表示对task0任务训练,
|
||||
类似的带有```eval```即为测试。
|
||||
|
||||
## 算法进度
|
||||
## 内容导航
|
||||
|
||||
| 算法名称 | 相关论文材料 | 环境 | 备注 |
|
||||
| :--------------------------------------: | :----------------------------------------------------------: | ----------------------------------------- | :--------------------------------: |
|
||||
|
||||
@@ -15,15 +15,15 @@ import torch.nn.functional as F
|
||||
from torch.distributions import Categorical
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, input_dim,output_dim,hidden_dim=128):
|
||||
def __init__(self, n_states,n_actions,hidden_dim=128):
|
||||
""" 初始化q网络,为全连接网络
|
||||
input_dim: 输入的特征数即环境的状态数
|
||||
output_dim: 输出的动作维度
|
||||
n_states: 输入的特征数即环境的状态数
|
||||
n_actions: 输出的动作维度
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
self.fc1 = nn.Linear(input_dim, hidden_dim) # 输入层
|
||||
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
|
||||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||||
self.fc3 = nn.Linear(hidden_dim, output_dim) # 输出层
|
||||
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
@@ -32,10 +32,10 @@ class MLP(nn.Module):
|
||||
return self.fc3(x)
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, n_obs, output_dim, hidden_size, init_w=3e-3):
|
||||
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
|
||||
super(Critic, self).__init__()
|
||||
|
||||
self.linear1 = nn.Linear(n_obs + output_dim, hidden_size)
|
||||
self.linear1 = nn.Linear(n_obs + n_actions, hidden_size)
|
||||
self.linear2 = nn.Linear(hidden_size, hidden_size)
|
||||
self.linear3 = nn.Linear(hidden_size, 1)
|
||||
# 随机初始化为较小的值
|
||||
@@ -51,11 +51,11 @@ class Critic(nn.Module):
|
||||
return x
|
||||
|
||||
class Actor(nn.Module):
|
||||
def __init__(self, n_obs, output_dim, hidden_size, init_w=3e-3):
|
||||
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
|
||||
super(Actor, self).__init__()
|
||||
self.linear1 = nn.Linear(n_obs, hidden_size)
|
||||
self.linear2 = nn.Linear(hidden_size, hidden_size)
|
||||
self.linear3 = nn.Linear(hidden_size, output_dim)
|
||||
self.linear3 = nn.Linear(hidden_size, n_actions)
|
||||
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
@@ -67,18 +67,18 @@ class Actor(nn.Module):
|
||||
return x
|
||||
|
||||
class ActorCritic(nn.Module):
|
||||
def __init__(self, input_dim, output_dim, hidden_dim=256):
|
||||
def __init__(self, n_states, n_actions, hidden_dim=256):
|
||||
super(ActorCritic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, output_dim),
|
||||
nn.Linear(hidden_dim, n_actions),
|
||||
nn.Softmax(dim=1),
|
||||
)
|
||||
|
||||
|
||||
@@ -11,36 +11,52 @@ Environment:
|
||||
'''
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
from matplotlib.font_manager import FontProperties
|
||||
def chinese_font():
|
||||
return FontProperties(fname='/System/Library/Fonts/STHeiti Light.ttc',size=15) # 系统字体路径,此处是mac的
|
||||
def plot_rewards(rewards,ma_rewards,tag="train",env='CartPole-v0',algo = "DQN",save=True,path='./'):
|
||||
sns.set()
|
||||
plt.title("average learning curve of {} for {}".format(algo,env))
|
||||
# from matplotlib.font_manager import FontProperties # 导入字体模块
|
||||
|
||||
# def chinese_font():
|
||||
# ''' 设置中文字体
|
||||
# '''
|
||||
# return FontProperties(fname='/System/Library/Fonts/STHeiti Light.ttc',size=15) # fname系统字体路径,此处是mac的
|
||||
# def plot_rewards_cn(rewards,ma_rewards,tag="train",env='CartPole-v0',algo = "DQN",save=True,path='./'):
|
||||
# ''' 中文画图
|
||||
# '''
|
||||
# sns.set()
|
||||
# plt.figure()
|
||||
# plt.title(u"{}环境下{}算法的学习曲线".format(env,algo),fontproperties=chinese_font())
|
||||
# plt.xlabel(u'回合数',fontproperties=chinese_font())
|
||||
# plt.plot(rewards)
|
||||
# plt.plot(ma_rewards)
|
||||
# plt.legend((u'奖励',u'滑动平均奖励',),loc="best",prop=chinese_font())
|
||||
# if save:
|
||||
# plt.savefig(path+f"{tag}_rewards_curve_cn")
|
||||
# # plt.show()
|
||||
|
||||
def plot_rewards(rewards,ma_rewards,plot_cfg,tag='train'):
|
||||
sns.set()
|
||||
plt.figure() # 创建一个图形实例,方便同时多画几个图
|
||||
plt.title("learning curve on {} of {} for {}".format(plot_cfg.device, plot_cfg.algo, plot_cfg.env))
|
||||
plt.xlabel('epsiodes')
|
||||
plt.plot(rewards,label='rewards')
|
||||
plt.plot(ma_rewards,label='ma rewards')
|
||||
plt.legend()
|
||||
if save:
|
||||
plt.savefig(path+"{}_rewards_curve".format(tag))
|
||||
if plot_cfg.save:
|
||||
plt.savefig(plot_cfg.result_path+"{}_rewards_curve".format(tag))
|
||||
plt.show()
|
||||
|
||||
def plot_rewards_cn(rewards,ma_rewards,tag="train",env='CartPole-v0',algo = "DQN",save=True,path='./'):
|
||||
''' 中文画图
|
||||
'''
|
||||
sns.set()
|
||||
plt.figure()
|
||||
plt.title(u"{}环境下{}算法的学习曲线".format(env,algo),fontproperties=chinese_font())
|
||||
plt.xlabel(u'回合数',fontproperties=chinese_font())
|
||||
plt.plot(rewards)
|
||||
plt.plot(ma_rewards)
|
||||
plt.legend((u'奖励',u'滑动平均奖励',),loc="best",prop=chinese_font())
|
||||
if save:
|
||||
plt.savefig(path+f"{tag}_rewards_curve_cn")
|
||||
# plt.show()
|
||||
# def plot_rewards(rewards,ma_rewards,tag="train",env='CartPole-v0',algo = "DQN",save=True,path='./'):
|
||||
# sns.set()
|
||||
# plt.figure() # 创建一个图形实例,方便同时多画几个图
|
||||
# plt.title("average learning curve of {} for {}".format(algo,env))
|
||||
# plt.xlabel('epsiodes')
|
||||
# plt.plot(rewards,label='rewards')
|
||||
# plt.plot(ma_rewards,label='ma rewards')
|
||||
# plt.legend()
|
||||
# if save:
|
||||
# plt.savefig(path+"{}_rewards_curve".format(tag))
|
||||
# plt.show()
|
||||
|
||||
def plot_losses(losses,algo = "DQN",save=True,path='./'):
|
||||
sns.set()
|
||||
plt.figure()
|
||||
plt.title("loss curve of {}".format(algo))
|
||||
plt.xlabel('epsiodes')
|
||||
plt.plot(losses,label='rewards')
|
||||
|
||||
6
codes/envs/README.md
Normal file
@@ -0,0 +1,6 @@
|
||||
## 环境汇总
|
||||
|
||||
[OpenAI Gym](./gym_info.md)
|
||||
[MuJoCo](./mujoco_info.md)
|
||||
|
||||
|
||||