update codes

This commit is contained in:
johnjim0816
2021-12-21 20:14:13 +08:00
parent 64c319cab4
commit 3b712e8815
71 changed files with 1097 additions and 1340 deletions

View File

@@ -10,12 +10,40 @@ Discription:
Environment:
'''
import torch.optim as optim
from A2C.model import ActorCritic
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical
class ActorCritic(nn.Module):
''' A2C网络模型包含一个Actor和Critic
'''
def __init__(self, input_dim, output_dim, hidden_dim):
super(ActorCritic, self).__init__()
self.critic = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
self.actor = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim),
nn.Softmax(dim=1),
)
def forward(self, x):
value = self.critic(x)
probs = self.actor(x)
dist = Categorical(probs)
return dist, value
class A2C:
def __init__(self,n_states,n_actions,cfg) -> None:
''' A2C算法
'''
def __init__(self,state_dim,action_dim,cfg) -> None:
self.gamma = cfg.gamma
self.device = cfg.device
self.model = ActorCritic(n_states, n_actions, cfg.hidden_size).to(self.device)
self.model = ActorCritic(state_dim, action_dim, cfg.hidden_size).to(self.device)
self.optimizer = optim.Adam(self.model.parameters())
def compute_returns(self,next_value, rewards, masks):

View File

@@ -1,36 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-05-03 21:38:54
LastEditor: JiangJi
LastEditTime: 2021-05-03 21:40:06
Discription:
Environment:
'''
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical
class ActorCritic(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim):
super(ActorCritic, self).__init__()
self.critic = nn.Sequential(
nn.Linear(n_states, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
self.actor = nn.Sequential(
nn.Linear(n_states, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, n_actions),
nn.Softmax(dim=1),
)
def forward(self, x):
value = self.critic(x)
probs = self.actor(x)
dist = Categorical(probs)
return dist, value

View File

@@ -1,7 +1,8 @@
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 路径
sys.path.append(parent_path) # 添加路径到系统路径sys.path
import sys
import os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import gym
import numpy as np
@@ -9,15 +10,18 @@ import torch
import torch.optim as optim
import datetime
from common.multiprocessing_env import SubprocVecEnv
from A2C.model import ActorCritic
from A2C.agent import ActorCritic
from common.utils import save_results, make_dir
from common.plot import plot_rewards
from common.utils import plot_rewards
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
algo_name = 'A2C' # 算法名称
env_name = 'CartPole-v0' # 环境名称
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
class A2CConfig:
def __init__(self) -> None:
self.algo='A2C' # 算法名称
self.env_name= 'CartPole-v0' # 环境名称
self.algo_name = algo_name# 算法名称
self.env_name = env_name # 环境名称
self.n_envs = 8 # 异步的环境数目
self.gamma = 0.99 # 强化学习中的折扣因子
self.hidden_dim = 256
@@ -27,10 +31,9 @@ class A2CConfig:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class PlotConfig:
def __init__(self) -> None:
self.algo = "DQN" # 算法名称
self.env_name = 'CartPole-v0' # 环境名称
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.result_path = curr_path+"/outputs/" + self.env_name + \
'/'+curr_time+'/results/' # 保存结果的路径
self.model_path = curr_path+"/outputs/" + self.env_name + \
@@ -67,6 +70,8 @@ def compute_returns(next_value, rewards, masks, gamma=0.99):
def train(cfg,envs):
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
env = gym.make(cfg.env_name) # a single env
env.seed(10)
state_dim = envs.observation_space.shape[0]
@@ -119,6 +124,7 @@ def train(cfg,envs):
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('完成训练!')
return test_rewards, test_ma_rewards
if __name__ == "__main__":
cfg = A2CConfig()

View File

@@ -9,22 +9,75 @@ LastEditTime: 2021-09-16 00:55:30
@Discription:
@Environment: python 3.7.7
'''
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity # 经验回放的容量
self.buffer = [] # 缓冲区
self.position = 0
from common.model import Actor, Critic
from common.memory import ReplayBuffer
def push(self, state, action, reward, next_state, done):
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
'''
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
return state, action, reward, next_state, done
def __len__(self):
''' 返回当前存储的量
'''
return len(self.buffer)
class Actor(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
super(Actor, self).__init__()
self.linear1 = nn.Linear(n_states, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, n_actions)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, x):
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = torch.tanh(self.linear3(x))
return x
class Critic(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
super(Critic, self).__init__()
self.linear1 = nn.Linear(n_states + n_actions, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
# 随机初始化为较小的值
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action):
# 按维数1拼接
x = torch.cat([state, action], 1)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class DDPG:
def __init__(self, state_dim, action_dim, cfg):
def __init__(self, n_states, n_actions, cfg):
self.device = cfg.device
self.critic = Critic(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
self.actor = Actor(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
self.target_critic = Critic(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
self.target_actor = Actor(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
self.critic = Critic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
self.actor = Actor(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
self.target_critic = Critic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
self.target_actor = Actor(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
# 复制参数到目标网络
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):

View File

@@ -16,12 +16,10 @@ class NormalizedActions(gym.ActionWrapper):
''' 将action范围重定在[0.1]之间
'''
def action(self, action):
low_bound = self.action_space.low
upper_bound = self.action_space.high
action = low_bound + (action + 1.0) * 0.5 * (upper_bound - low_bound)
action = np.clip(action, low_bound, upper_bound)
return action
def reverse_action(self, action):

81
codes/DDPG/task0.py Normal file
View File

@@ -0,0 +1,81 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 20:58:21
@LastEditor: John
LastEditTime: 2021-09-16 01:31:33
@Discription:
@Environment: python 3.7.7
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径sys.path
import datetime
import gym
import torch
from DDPG.env import NormalizedActions
from DDPG.agent import DDPG
from DDPG.train import train,test
from common.utils import save_results,make_dir
from common.utils import plot_rewards
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
algo_name = 'DDPG' # 算法名称
env_name = 'Pendulum-v1' # 环境名称gym新版本约0.21.0之后中Pendulum-v0改为Pendulum-v1
class DDPGConfig:
def __init__(self):
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.train_eps = 300 # 训练的回合数
self.eval_eps = 50 # 测试的回合数
self.gamma = 0.99 # 折扣因子
self.critic_lr = 1e-3 # 评论家网络的学习率
self.actor_lr = 1e-4 # 演员网络的学习率
self.memory_capacity = 8000 # 经验回放的容量
self.batch_size = 128 # mini-batch SGD中的批量大小
self.target_update = 2 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层维度
self.soft_tau = 1e-2 # 软更新参数
class PlotConfig:
def __init__(self) -> None:
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.result_path = curr_path+"/outputs/" + self.env_name + \
'/'+curr_time+'/results/' # 保存结果的路径
self.model_path = curr_path+"/outputs/" + self.env_name + \
'/'+curr_time+'/models/' # 保存模型的路径
self.save = True # 是否保存图片
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
def env_agent_config(cfg,seed=1):
env = NormalizedActions(gym.make(cfg.env_name)) # 装饰action噪声
env.seed(seed) # 随机种子
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
agent = DDPG(n_states,n_actions,cfg)
return env,agent
cfg = DDPGConfig()
plot_cfg = PlotConfig()
# 训练
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(plot_cfg.result_path, plot_cfg.model_path)
agent.save(path=plot_cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path)
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
# 测试
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=plot_cfg.model_path)
rewards,ma_rewards = test(plot_cfg,env,agent)
save_results(rewards,ma_rewards,tag = 'test',path = cfg.result_path)
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果

View File

@@ -1,136 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 20:58:21
@LastEditor: John
LastEditTime: 2021-09-16 01:31:33
@Discription:
@Environment: python 3.7.7
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径sys.path
import datetime
import gym
import torch
from DDPG.env import NormalizedActions, OUNoise
from DDPG.agent import DDPG
from common.utils import save_results,make_dir
from common.plot import plot_rewards
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
class DDPGConfig:
def __init__(self):
self.algo = 'DDPG' # 算法名称
self.env_name = 'Pendulum-v0' # 环境名称
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.train_eps = 300 # 训练的回合数
self.eval_eps = 50 # 测试的回合数
self.gamma = 0.99 # 折扣因子
self.critic_lr = 1e-3 # 评论家网络的学习率
self.actor_lr = 1e-4 # 演员网络的学习率
self.memory_capacity = 8000 # 经验回放的容量
self.batch_size = 128 # mini-batch SGD中的批量大小
self.target_update = 2 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层维度
self.soft_tau = 1e-2 # 软更新参数
class PlotConfig:
def __init__(self) -> None:
self.algo = "DQN" # 算法名称
self.env_name = 'CartPole-v0' # 环境名称
self.result_path = curr_path+"/outputs/" + self.env_name + \
'/'+curr_time+'/results/' # 保存结果的路径
self.model_path = curr_path+"/outputs/" + self.env_name + \
'/'+curr_time+'/models/' # 保存模型的路径
self.save = True # 是否保存图片
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
def env_agent_config(cfg,seed=1):
env = NormalizedActions(gym.make(cfg.env_name)) # 装饰action噪声
env.seed(seed) # 随机种子
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
agent = DDPG(n_states,n_actions,cfg)
return env,agent
def train(cfg, env, agent):
print('开始训练!')
print(f'环境:{cfg.env_name},算法:{cfg.algo},设备:{cfg.device}')
ou_noise = OUNoise(env.action_space) # 动作噪声
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.train_eps):
state = env.reset()
ou_noise.reset()
done = False
ep_reward = 0
i_step = 0
while not done:
i_step += 1
action = agent.choose_action(state)
action = ou_noise.get_action(action, i_step)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done)
agent.update()
state = next_state
if (i_ep+1)%10 == 0:
print('回合:{}/{},奖励:{:.2f}'.format(i_ep+1, cfg.train_eps, ep_reward))
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('完成训练!')
return rewards, ma_rewards
def eval(cfg, env, agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.eval_eps):
state = env.reset()
done = False
ep_reward = 0
i_step = 0
while not done:
i_step += 1
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
state = next_state
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('完成测试!')
return rewards, ma_rewards
if __name__ == "__main__":
cfg = DDPGConfig()
plot_cfg = PlotConfig()
# 训练
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(plot_cfg.result_path, plot_cfg.model_path)
agent.save(path=plot_cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path)
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train")
# 测试
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=plot_cfg.model_path)
rewards,ma_rewards = eval(plot_cfg,env,agent)
save_results(rewards,ma_rewards,tag = 'eval',path = cfg.result_path)
plot_rewards(rewards,ma_rewards,plot_cfg,tag = "eval")

64
codes/DDPG/train.py Normal file
View File

@@ -0,0 +1,64 @@
import sys
import os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
from DDPG.env import OUNoise
def train(cfg, env, agent):
print('开始训练!')
print(f'环境:{cfg.env_name},算法:{cfg.algo},设备:{cfg.device}')
ou_noise = OUNoise(env.action_space) # 动作噪声
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.train_eps):
state = env.reset()
ou_noise.reset()
done = False
ep_reward = 0
i_step = 0
while not done:
i_step += 1
action = agent.choose_action(state)
action = ou_noise.get_action(action, i_step)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done)
agent.update()
state = next_state
if (i_ep+1)%10 == 0:
print('回合:{}/{},奖励:{:.2f}'.format(i_ep+1, cfg.train_eps, ep_reward))
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('完成训练!')
return rewards, ma_rewards
def test(cfg, env, agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.eval_eps):
state = env.reset()
done = False
ep_reward = 0
i_step = 0
while not done:
i_step += 1
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
state = next_state
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print(f"回合:{i_ep+1}/{cfg.eval_eps},奖励:{ep_reward:.1f}")
print('完成测试!')
return rewards, ma_rewards

View File

@@ -14,16 +14,57 @@ LastEditTime: 2021-09-15 13:35:36
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import random
import math
import numpy as np
from common.memory import ReplayBuffer
from common.model import MLP
class DQN:
def __init__(self, n_states, n_actions, cfg):
self.n_actions = n_actions # 总的动作个数
class MLP(nn.Module):
def __init__(self, state_dim,action_dim,hidden_dim=128):
""" 初始化q网络为全连接网络
state_dim: 输入的特征数即环境的状态数
action_dim: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim, action_dim) # 输出层
def forward(self, x):
# 各层对应的激活函数
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity # 经验回放的容量
self.buffer = [] # 缓冲区
self.position = 0
def push(self, state, action, reward, next_state, done):
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
'''
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
return state, action, reward, next_state, done
def __len__(self):
''' 返回当前存储的量
'''
return len(self.buffer)
class DQN:
def __init__(self, state_dim, action_dim, cfg):
self.action_dim = action_dim # 总的动作个数
self.device = cfg.device # 设备cpu或gpu等
self.gamma = cfg.gamma # 奖励的折扣因子
# e-greedy策略相关参数
@@ -32,8 +73,8 @@ class DQN:
(cfg.epsilon_start - cfg.epsilon_end) * \
math.exp(-1. * frame_idx / cfg.epsilon_decay)
self.batch_size = cfg.batch_size
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
target_param.data.copy_(param.data)
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
@@ -49,7 +90,7 @@ class DQN:
q_values = self.policy_net(state)
action = q_values.max(1)[1].item() # 选择Q值最大的动作
else:
action = random.randrange(self.n_actions)
action = random.randrange(self.action_dim)
return action
def update(self):
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时不更新策略

75
codes/DQN/task0.py Normal file
View File

@@ -0,0 +1,75 @@
import sys
import os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import gym
import torch
import datetime
from common.utils import save_results, make_dir
from common.utils import plot_rewards
from DQN.agent import DQN
from DQN.train import train,test
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
algo_name = "DQN" # 算法名称
env_name = 'CartPole-v0' # 环境名称
class DQNConfig:
def __init__(self):
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.train_eps = 200 # 训练的回合数
self.eval_eps = 30 # 测试的回合数
# 超参数
self.gamma = 0.95 # 强化学习中的折扣因子
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
self.lr = 0.0001 # 学习率
self.memory_capacity = 100000 # 经验回放的容量
self.batch_size = 64 # mini-batch SGD中的批量大小
self.target_update = 4 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层
class PlotConfig:
def __init__(self) -> None:
self.algo = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
def env_agent_config(cfg, seed=1):
''' 创建环境和智能体
'''
env = gym.make(cfg.env_name) # 创建环境
env.seed(seed) # 设置随机种子
state_dim = env.observation_space.shape[0] # 状态数
action_dim = env.action_space.n # 动作数
agent = DQN(state_dim, action_dim, cfg) # 创建智能体
return env, agent
cfg = DQNConfig()
plot_cfg = PlotConfig()
# 训练
env, agent = env_agent_config(cfg, seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=plot_cfg.model_path) # 保存模型
save_results(rewards, ma_rewards, tag='train',
path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
# 测试
env, agent = env_agent_config(cfg, seed=10)
agent.load(path=plot_cfg.model_path) # 导入模型
rewards, ma_rewards = test(cfg, env, agent)
save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果

83
codes/DQN/task1.py Normal file
View File

@@ -0,0 +1,83 @@
import sys
import os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import gym
import torch
import datetime
from common.utils import save_results, make_dir
from common.utils import plot_rewards, plot_rewards_cn
from DQN.agent import DQN
from DQN.train import train,test
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
algo_name = "DQN" # 算法名称
env_name = 'CartPole-v1' # 环境名称
class DQNConfig:
''' 算法相关参数设置
'''
def __init__(self):
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.train_eps = 200 # 训练的回合数
self.eval_eps = 30 # 测试的回合数
# 超参数
self.gamma = 0.95 # 强化学习中的折扣因子
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
self.lr = 0.0001 # 学习率
self.memory_capacity = 100000 # 经验回放的容量
self.batch_size = 64 # mini-batch SGD中的批量大小
self.target_update = 4 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层
class PlotConfig:
''' 绘图相关参数设置
'''
def __init__(self) -> None:
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
def env_agent_config(cfg, seed=1):
''' 创建环境和智能体
'''
env = gym.make(cfg.env_name) # 创建环境
env.seed(seed) # 设置随机种子
state_dim = env.observation_space.shape[0] # 状态数
action_dim = env.action_space.n # 动作数
agent = DQN(state_dim, action_dim, cfg) # 创建智能体
return env, agent
cfg = DQNConfig()
plot_cfg = PlotConfig()
# 训练
env, agent = env_agent_config(cfg, seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=plot_cfg.model_path) # 保存模型
save_results(rewards, ma_rewards, tag='train',
path=plot_cfg.result_path) # 保存结果
plot_rewards_cn(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
# 测试
env, agent = env_agent_config(cfg, seed=10)
agent.load(path=plot_cfg.model_path) # 导入模型
rewards, ma_rewards = test(cfg, env, agent)
save_results(rewards, ma_rewards, tag='test',
path=plot_cfg.result_path) # 保存结果
plot_rewards_cn(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果

View File

@@ -38,15 +38,15 @@
"outputs": [],
"source": [
"class MLP(nn.Module):\n",
" def __init__(self, n_states,n_actions,hidden_dim=128):\n",
" def __init__(self, state_dim,action_dim,hidden_dim=128):\n",
" \"\"\" 初始化q网络为全连接网络\n",
" n_states: 输入的特征数即环境的状态数\n",
" n_actions: 输出的动作维度\n",
" state_dim: 输入的特征数即环境的状态数\n",
" action_dim: 输出的动作维度\n",
" \"\"\"\n",
" super(MLP, self).__init__()\n",
" self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层\n",
" self.fc1 = nn.Linear(state_dim, hidden_dim) # 输入层\n",
" self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层\n",
" self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层\n",
" self.fc3 = nn.Linear(hidden_dim, action_dim) # 输出层\n",
" \n",
" def forward(self, x):\n",
" # 各层对应的激活函数\n",
@@ -107,9 +107,9 @@
"outputs": [],
"source": [
"class DQN:\n",
" def __init__(self, n_states, n_actions, cfg):\n",
" def __init__(self, state_dim, action_dim, cfg):\n",
"\n",
" self.n_actions = n_actions # 总的动作个数\n",
" self.action_dim = action_dim # 总的动作个数\n",
" self.device = cfg.device # 设备cpu或gpu等\n",
" self.gamma = cfg.gamma # 奖励的折扣因子\n",
" # e-greedy策略相关参数\n",
@@ -118,8 +118,8 @@
" (cfg.epsilon_start - cfg.epsilon_end) * \\\n",
" math.exp(-1. * frame_idx / cfg.epsilon_decay)\n",
" self.batch_size = cfg.batch_size\n",
" self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)\n",
" self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)\n",
" self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)\n",
" self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)\n",
" for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net\n",
" target_param.data.copy_(param.data)\n",
" self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器\n",
@@ -135,7 +135,7 @@
" q_values = self.policy_net(state)\n",
" action = q_values.max(1)[1].item() # 选择Q值最大的动作\n",
" else:\n",
" action = random.randrange(self.n_actions)\n",
" action = random.randrange(self.action_dim)\n",
" return action\n",
" def update(self):\n",
" if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时不更新策略\n",
@@ -211,9 +211,9 @@
" '''\n",
" env = gym.make(cfg.env) # 创建环境\n",
" env.seed(seed) # 设置随机种子\n",
" n_states = env.observation_space.shape[0] # 状态数\n",
" n_actions = env.action_space.n # 动作数\n",
" agent = DQN(n_states,n_actions,cfg) # 创建智能体\n",
" state_dim = env.observation_space.shape[0] # 状态数\n",
" action_dim = env.action_space.n # 动作数\n",
" agent = DQN(state_dim,action_dim,cfg) # 创建智能体\n",
" return env,agent"
]
},

View File

@@ -9,63 +9,11 @@ LastEditTime: 2021-09-15 15:34:13
@Discription:
@Environment: python 3.7.7
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import gym
import torch
import datetime
from common.utils import save_results, make_dir
from common.plot import plot_rewards
from DQN.agent import DQN
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
class DQNConfig:
def __init__(self):
self.algo = "DQN" # 算法名称
self.env_name = 'CartPole-v0' # 环境名称
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.train_eps = 200 # 训练的回合数
self.eval_eps = 30 # 测试的回合数
# 超参数
self.gamma = 0.95 # 强化学习中的折扣因子
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
self.lr = 0.0001 # 学习率
self.memory_capacity = 100000 # 经验回放的容量
self.batch_size = 64 # mini-batch SGD中的批量大小
self.target_update = 4 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层
class PlotConfig:
def __init__(self) -> None:
self.algo = "DQN" # 算法名称
self.env_name = 'CartPole-v0' # 环境名称
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.result_path = curr_path+"/outputs/" + self.env_name + \
'/'+curr_time+'/results/' # 保存结果的路径
self.model_path = curr_path+"/outputs/" + self.env_name + \
'/'+curr_time+'/models/' # 保存模型的路径
self.save = True # 是否保存图片
def env_agent_config(cfg,seed=1):
''' 创建环境和智能体
'''
env = gym.make(cfg.env_name) # 创建环境
env.seed(seed) # 设置随机种子
n_states = env.observation_space.shape[0] # 状态数
n_actions = env.action_space.n # 动作数
agent = DQN(n_states,n_actions,cfg) # 创建智能体
return env,agent
def train(cfg, env, agent):
''' 训练
'''
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.train_eps):
@@ -92,9 +40,9 @@ def train(cfg, env, agent):
print('完成训练!')
return rewards, ma_rewards
def eval(cfg,env,agent):
def test(cfg,env,agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
# 由于测试不需要使用epsilon-greedy策略所以相应的值设置为0
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
@@ -115,11 +63,64 @@ def eval(cfg,env,agent):
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
print(f"回合:{i_ep+1}/{cfg.eval_eps}, 奖励:{ep_reward:.1f}")
print(f"回合:{i_ep+1}/{cfg.eval_eps}奖励:{ep_reward:.1f}")
print('完成测试!')
return rewards,ma_rewards
if __name__ == "__main__":
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import gym
import torch
import datetime
from common.utils import save_results, make_dir
from common.utils import plot_rewards
from DQN.agent import DQN
from DQN.train import train
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
class DQNConfig:
def __init__(self):
self.algo = "DQN" # 算法名称
self.env_name = 'CartPole-v0' # 环境名称
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.train_eps = 200 # 训练的回合数
self.eval_eps = 30 # 测试的回合数
# 超参数
self.gamma = 0.95 # 强化学习中的折扣因子
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
self.lr = 0.0001 # 学习率
self.memory_capacity = 100000 # 经验回放的容量
self.batch_size = 64 # mini-batch SGD中的批量大小
self.target_update = 4 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层
class PlotConfig:
def __init__(self) -> None:
self.algo = "DQN" # 算法名称
self.env_name = 'CartPole-v0' # 环境名称
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.result_path = curr_path+"/outputs/" + self.env_name + \
'/'+curr_time+'/results/' # 保存结果的路径
self.model_path = curr_path+"/outputs/" + self.env_name + \
'/'+curr_time+'/models/' # 保存模型的路径
self.save = True # 是否保存图片
def env_agent_config(cfg,seed=1):
''' 创建环境和智能体
'''
env = gym.make(cfg.env_name) # 创建环境
env.seed(seed) # 设置随机种子
state_dim = env.observation_space.shape[0] # 状态数
action_dim = env.action_space.n # 动作数
agent = DQN(state_dim,action_dim,cfg) # 创建智能体
return env,agent
cfg = DQNConfig()
plot_cfg = PlotConfig()
# 训练
@@ -132,6 +133,6 @@ if __name__ == "__main__":
# 测试
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=plot_cfg.model_path) # 导入模型
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards,ma_rewards, plot_cfg, tag="eval") # 画出结果
rewards,ma_rewards = test(cfg,env,agent)
save_results(rewards,ma_rewards,tag='test',path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards,ma_rewards, plot_cfg, tag="test") # 画出结果

View File

@@ -14,10 +14,10 @@ CartPole-v0是一个经典的入门环境如下图它通过向左(动作=0
import gym
env = gym.make('CartPole-v0') # 建立环境
env.seed(1) # 随机种子
n_states = env.observation_space.shape[0] # 状态数
n_actions = env.action_space.n # 动作数
state_dim = env.observation_space.shape[0] # 状态数
action_dim = env.action_space.n # 动作数
state = env.reset() # 初始化环境
print(f"状态数:{n_states},动作数:{n_actions}")
print(f"状态数:{state_dim},动作数:{action_dim}")
print(f"初始状态:{state}")
```

View File

@@ -30,9 +30,9 @@ env = CliffWalkingWapper(env) # 装饰环境
这里我们在程序中使用了一个装饰器重新定义环境但不影响对环境的理解感兴趣的同学具体看相关代码。可以由于gym环境封装得比较好所以我们想要使用这个环境只需要使用gym.make命令输入函数名即可然后我们可以查看环境的状态和动作数目
```python
n_states = env.observation_space.n # 状态数
n_actions = env.action_space.n # 动作数
print(f"状态数:{n_states},动作数:{n_actions}")
state_dim = env.observation_space.n # 状态数
action_dim = env.action_space.n # 动作数
print(f"状态数:{state_dim},动作数:{action_dim}")
```
打印出来的结果如下:
@@ -72,9 +72,9 @@ print(state)
env = gym.make('CliffWalking-v0') # 定义环境
env = CliffWalkingWapper(env) # 装饰环境
env.seed(1) # 设置随机种子
n_states = env.observation_space.n # 状态数
n_actions = env.action_space.n # 动作数
agent = QLearning(n_states,n_actions,cfg) # cfg存储算法相关参数
state_dim = env.observation_space.n # 状态数
action_dim = env.action_space.n # 动作数
agent = QLearning(state_dim,action_dim,cfg) # cfg存储算法相关参数
for i_ep in range(cfg.train_eps): # cfg.train_eps表示最大训练的回合数
ep_reward = 0 # 记录每个回合的奖励
state = env.reset() # 重置环境

View File

@@ -5,7 +5,7 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:50:49
@LastEditor: John
LastEditTime: 2021-05-04 22:28:06
LastEditTime: 2021-11-19 18:07:09
@Discription:
@Environment: python 3.7.7
'''
@@ -16,15 +16,55 @@ LastEditTime: 2021-05-04 22:28:06
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import random
import math
import numpy as np
from common.memory import ReplayBuffer
from common.model import MLP
class DoubleDQN:
def __init__(self, state_dim, action_dim, cfg):
self.action_dim = action_dim # 总的动作个数
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity # 经验回放的容量
self.buffer = [] # 缓冲区
self.position = 0
def push(self, state, action, reward, next_state, done):
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
'''
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
return state, action, reward, next_state, done
def __len__(self):
''' 返回当前存储的量
'''
return len(self.buffer)
class MLP(nn.Module):
def __init__(self, n_states,n_actions,hidden_dim=128):
""" 初始化q网络为全连接网络
n_states: 输入的特征数即环境的状态数
n_actions: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
def forward(self, x):
# 各层对应的激活函数
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
class DoubleDQN:
def __init__(self, n_states, n_actions, cfg):
self.n_actions = n_actions # 总的动作个数
self.device = cfg.device # 设备cpu或gpu等
self.gamma = cfg.gamma
# e-greedy策略相关参数
@@ -33,8 +73,8 @@ class DoubleDQN:
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.batch_size = cfg.batch_size
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
# target_net copy from policy_net
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
target_param.data.copy_(param.data)
@@ -43,8 +83,15 @@ class DoubleDQN:
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
self.loss = 0
self.memory = ReplayBuffer(cfg.memory_capacity)
def predict(self,state):
with torch.no_grad():
def choose_action(self, state):
'''选择动作
'''
self.actions_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.actions_count / self.epsilon_decay)
if random.random() > self.epsilon:
with torch.no_grad():
# 先转为张量便于丢给神经网络,state元素数据原本为float64
# 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
state = torch.tensor(
@@ -55,17 +102,8 @@ class DoubleDQN:
# 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
# 所以tensor.max(1)[1]返回最大值对应的下标即action
action = q_value.max(1)[1].item()
return action
def choose_action(self, state):
'''选择动作
'''
self.actions_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.actions_count / self.epsilon_decay)
if random.random() > self.epsilon:
action = self.predict(state)
else:
action = random.randrange(self.action_dim)
action = random.randrange(self.n_actions)
return action
def update(self):

Binary file not shown.

Before

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

83
codes/DoubleDQN/task0.py Normal file
View File

@@ -0,0 +1,83 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-11-07 18:10:37
LastEditor: JiangJi
LastEditTime: 2021-11-19 18:34:05
Discription:
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import gym
import torch
import datetime
from common.utils import save_results, make_dir
from common.utils import plot_rewards
from DoubleDQN.agent import DoubleDQN
from DoubleDQN.train import train,test
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
algo_name = 'DoubleDQN' # 算法名称
env_name = 'CartPole-v0' # 环境名称
class DoubleDQNConfig:
def __init__(self):
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.train_eps = 200 # 训练的回合数
self.test_eps = 30 # 测试的回合数
self.gamma = 0.95 # 强化学习中的折扣因子
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
self.lr = 0.0001 # 学习率
self.memory_capacity = 100000 # 经验回放的容量
self.batch_size = 64 # mini-batch SGD中的批量大小
self.target_update = 2 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层
class PlotConfig:
''' 绘图相关参数设置
'''
def __init__(self) -> None:
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env_name)
env.seed(seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
agent = DoubleDQN(n_states,n_actions,cfg)
return env,agent
cfg = DoubleDQNConfig()
plot_cfg = PlotConfig()
# 训练
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=plot_cfg.model_path) # 保存模型
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
# 测试
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=plot_cfg.model_path) # 导入模型
rewards,ma_rewards = test(cfg,env,agent)
save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果

View File

@@ -1,194 +0,0 @@
{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.10"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python3710jvsc74a57bd0366e1054dee9d4501b0eb8f87335afd3c67fc62db6ee611bbc7f8f5a1fefe232",
"display_name": "Python 3.7.10 64-bit ('py37': conda)"
},
"metadata": {
"interpreter": {
"hash": "366e1054dee9d4501b0eb8f87335afd3c67fc62db6ee611bbc7f8f5a1fefe232"
}
}
},
"nbformat": 4,
"nbformat_minor": 2,
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"from pathlib import Path\n",
"curr_path = str(Path().absolute())\n",
"parent_path = str(Path().absolute().parent)\n",
"sys.path.append(parent_path) # add current terminal path to sys.path"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import gym\n",
"import torch\n",
"import datetime\n",
"from DoubleDQN.agent import DoubleDQN\n",
"from common.plot import plot_rewards\n",
"from common.utils import save_results, make_dir\n",
"\n",
"curr_time = datetime.datetime.now().strftime(\n",
" \"%Y%m%d-%H%M%S\") # obtain current time"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class DoubleDQNConfig:\n",
" def __init__(self):\n",
" self.algo = \"DoubleDQN\" # name of algo\n",
" self.env = 'CartPole-v0' # env name\n",
" self.result_path = curr_path+\"/outputs/\" + self.env + \\\n",
" '/'+curr_time+'/results/' # path to save results\n",
" self.model_path = curr_path+\"/outputs/\" + self.env + \\\n",
" '/'+curr_time+'/models/' # path to save models\n",
" self.train_eps = 200 # max tranng episodes\n",
" self.eval_eps = 50 # max evaling episodes\n",
" self.gamma = 0.95\n",
" self.epsilon_start = 1 # start epsilon of e-greedy policy\n",
" self.epsilon_end = 0.01 \n",
" self.epsilon_decay = 500\n",
" self.lr = 0.001 # learning rate\n",
" self.memory_capacity = 100000 # capacity of Replay Memory\n",
" self.batch_size = 64\n",
" self.target_update = 2 # update frequency of target net\n",
" self.device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") # check gpu\n",
" self.hidden_dim = 256 # hidden size of net"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def env_agent_config(cfg,seed=1):\n",
" env = gym.make(cfg.env) \n",
" env.seed(seed)\n",
" state_dim = env.observation_space.shape[0]\n",
" action_dim = env.action_space.n\n",
" agent = DoubleDQN(state_dim,action_dim,cfg)\n",
" return env,agent"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def train(cfg,env,agent):\n",
" print('Start to train !')\n",
" rewards,ma_rewards = [],[]\n",
" for i_ep in range(cfg.train_eps):\n",
" state = env.reset() \n",
" ep_reward = 0\n",
" while True:\n",
" action = agent.choose_action(state) \n",
" next_state, reward, done, _ = env.step(action)\n",
" ep_reward += reward\n",
" agent.memory.push(state, action, reward, next_state, done) \n",
" state = next_state \n",
" agent.update() \n",
" if done:\n",
" break\n",
" if i_ep % cfg.target_update == 0:\n",
" agent.target_net.load_state_dict(agent.policy_net.state_dict())\n",
" if (i_ep+1)%10 == 0:\n",
" print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward}')\n",
" rewards.append(ep_reward)\n",
" if ma_rewards:\n",
" ma_rewards.append(\n",
" 0.9*ma_rewards[-1]+0.1*ep_reward)\n",
" else:\n",
" ma_rewards.append(ep_reward) \n",
" print('Complete training')\n",
" return rewards,ma_rewards"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def eval(cfg,env,agent):\n",
" print('Start to eval !')\n",
" print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')\n",
" rewards = [] \n",
" ma_rewards = []\n",
" for i_ep in range(cfg.eval_eps):\n",
" state = env.reset() \n",
" ep_reward = 0 \n",
" while True:\n",
" action = agent.predict(state) \n",
" next_state, reward, done, _ = env.step(action) \n",
" state = next_state \n",
" ep_reward += reward\n",
" if done:\n",
" break\n",
" rewards.append(ep_reward)\n",
" if ma_rewards:\n",
" ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)\n",
" else:\n",
" ma_rewards.append(ep_reward)\n",
" print(f\"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}\")\n",
" print('Complete evaling')\n",
" return rewards,ma_rewards "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if __name__ == \"__main__\":\n",
" cfg = DoubleDQNConfig()\n",
" # train\n",
" env,agent = env_agent_config(cfg,seed=1)\n",
" rewards, ma_rewards = train(cfg, env, agent)\n",
" make_dir(cfg.result_path, cfg.model_path)\n",
" agent.save(path=cfg.model_path)\n",
" save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)\n",
" plot_rewards(rewards, ma_rewards, tag=\"train\",\n",
" algo=cfg.algo, path=cfg.result_path)\n",
"\n",
" # eval\n",
" env,agent = env_agent_config(cfg,seed=10)\n",
" agent.load(path=cfg.model_path)\n",
" rewards,ma_rewards = eval(cfg,env,agent)\n",
" save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)\n",
" plot_rewards(rewards,ma_rewards,tag=\"eval\",env=cfg.env,algo = cfg.algo,path=cfg.result_path)"
]
}
]
}

View File

@@ -1,123 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:48:57
@LastEditor: John
LastEditTime: 2021-09-10 15:26:05
@Discription:
@Environment: python 3.7.7
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import gym
import torch
import datetime
from DoubleDQN.agent import DoubleDQN
from common.plot import plot_rewards
from common.utils import save_results, make_dir
curr_time = datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S") # obtain current time
class DoubleDQNConfig:
def __init__(self):
self.algo = "DoubleDQN" # name of algo
self.env = 'CartPole-v0' # env name
self.result_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/models/' # path to save models
self.train_eps = 200 # max tranng episodes
self.eval_eps = 50 # max evaling episodes
self.gamma = 0.95
self.epsilon_start = 1 # start epsilon of e-greedy policy
self.epsilon_end = 0.01
self.epsilon_decay = 500
self.lr = 0.001 # learning rate
self.memory_capacity = 100000 # capacity of Replay Memory
self.batch_size = 64
self.target_update = 2 # update frequency of target net
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu
self.hidden_dim = 256 # hidden size of net
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env)
env.seed(seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = DoubleDQN(state_dim,action_dim,cfg)
return env,agent
def train(cfg,env,agent):
print('Start to train !')
rewards,ma_rewards = [],[]
for i_ep in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
while True:
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done)
state = next_state
agent.update()
if done:
break
if i_ep % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward},Epsilon:{agent.epsilon:.2f}')
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('Complete training')
return rewards,ma_rewards
def eval(cfg,env,agent):
print('Start to eval !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = []
for i_ep in range(cfg.eval_eps):
state = env.reset()
ep_reward = 0
while True:
action = agent.predict(state)
next_state, reward, done, _ = env.step(action)
state = next_state
ep_reward += reward
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}")
print('Complete evaling')
return rewards,ma_rewards
if __name__ == "__main__":
cfg = DoubleDQNConfig()
# 训练
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
plot_rewards(rewards, ma_rewards, tag="train",
algo=cfg.algo, path=cfg.result_path)
# 测试
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)

73
codes/DoubleDQN/train.py Normal file
View File

@@ -0,0 +1,73 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-11-07 18:10:37
LastEditor: JiangJi
LastEditTime: 2021-11-19 18:34:05
Discription:
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
def train(cfg,env,agent):
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.train_eps):
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
while True:
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done)
state = next_state
agent.update()
if done:
break
if i_ep % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
if (i_ep+1)%10 == 0:
print(f'回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward}')
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('完成训练!')
return rewards,ma_rewards
def test(cfg,env,agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
# 由于测试不需要使用epsilon-greedy策略所以相应的值设置为0
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.test_eps):
state = env.reset()
ep_reward = 0
while True:
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
state = next_state
ep_reward += reward
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
print('完成测试!')
return rewards,ma_rewards

View File

@@ -136,12 +136,12 @@
"outputs": [],
"source": [
"class DuelingNet(nn.Module):\n",
" def __init__(self, n_states, n_actions,hidden_size=128):\n",
" def __init__(self, state_dim, action_dim,hidden_size=128):\n",
" super(DuelingNet, self).__init__()\n",
" \n",
" # 隐藏层\n",
" self.hidden = nn.Sequential(\n",
" nn.Linear(n_states, hidden_size),\n",
" nn.Linear(state_dim, hidden_size),\n",
" nn.ReLU()\n",
" )\n",
" \n",
@@ -149,7 +149,7 @@
" self.advantage = nn.Sequential(\n",
" nn.Linear(hidden_size, hidden_size),\n",
" nn.ReLU(),\n",
" nn.Linear(hidden_size, n_actions)\n",
" nn.Linear(hidden_size, action_dim)\n",
" )\n",
" \n",
" # 价值函数\n",
@@ -192,7 +192,7 @@
],
"source": [
"class DuelingDQN:\n",
" def __init__(self,n_states,n_actions,cfg) -> None:\n",
" def __init__(self,state_dim,action_dim,cfg) -> None:\n",
" self.batch_size = cfg.batch_size\n",
" self.device = cfg.device\n",
" self.loss_history = [] # 记录loss的变化\n",
@@ -200,8 +200,8 @@
" self.epsilon = lambda frame_idx: cfg.epsilon_end + \\\n",
" (cfg.epsilon_start - cfg.epsilon_end) * \\\n",
" math.exp(-1. * frame_idx / cfg.epsilon_decay)\n",
" self.policy_net = DuelingNet(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)\n",
" self.target_net = DuelingNet(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)\n",
" self.policy_net = DuelingNet(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)\n",
" self.target_net = DuelingNet(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)\n",
" for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网络targe_net\n",
" target_param.data.copy_(param.data)\n",
" self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器\n",

View File

@@ -11,23 +11,62 @@ Environment:
'''
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import random,math
import torch.optim as optim
from common.model import MLP
from common.memory import ReplayBuffer
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity # 经验回放的容量
self.buffer = [] # 缓冲区
self.position = 0
def push(self, state, action, reward, next_state, done):
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
'''
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
return state, action, reward, next_state, done
def __len__(self):
''' 返回当前存储的量
'''
return len(self.buffer)
class MLP(nn.Module):
def __init__(self, input_dim,output_dim,hidden_dim=128):
""" 初始化q网络为全连接网络
input_dim: 输入的特征数即环境的状态数
output_dim: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim, output_dim) # 输出层
def forward(self, x):
# 各层对应的激活函数
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
class HierarchicalDQN:
def __init__(self,state_dim,action_dim,cfg):
self.state_dim = state_dim
self.action_dim = action_dim
def __init__(self,n_states,n_actions,cfg):
self.n_states = n_states
self.n_actions = n_actions
self.gamma = cfg.gamma
self.device = cfg.device
self.batch_size = cfg.batch_size
self.frame_idx = 0
self.frame_idx = 0 # 用于epsilon的衰减计数
self.epsilon = lambda frame_idx: cfg.epsilon_end + (cfg.epsilon_start - cfg.epsilon_end ) * math.exp(-1. * frame_idx / cfg.epsilon_decay)
self.policy_net = MLP(2*state_dim, action_dim,cfg.hidden_dim).to(self.device)
self.meta_policy_net = MLP(state_dim, state_dim,cfg.hidden_dim).to(self.device)
self.policy_net = MLP(2*n_states, n_actions,cfg.hidden_dim).to(self.device)
self.meta_policy_net = MLP(n_states, n_states,cfg.hidden_dim).to(self.device)
self.optimizer = optim.Adam(self.policy_net.parameters(),lr=cfg.lr)
self.meta_optimizer = optim.Adam(self.meta_policy_net.parameters(),lr=cfg.lr)
self.memory = ReplayBuffer(cfg.memory_capacity)
@@ -37,7 +76,7 @@ class HierarchicalDQN:
self.losses = []
self.meta_losses = []
def to_onehot(self,x):
oh = np.zeros(self.state_dim)
oh = np.zeros(self.n_states)
oh[x - 1] = 1.
return oh
def set_goal(self,state):
@@ -46,7 +85,7 @@ class HierarchicalDQN:
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0)
goal = self.meta_policy_net(state).max(1)[1].item()
else:
goal = random.randrange(self.state_dim)
goal = random.randrange(self.n_states)
return goal
def choose_action(self,state):
self.frame_idx += 1
@@ -56,7 +95,7 @@ class HierarchicalDQN:
q_value = self.policy_net(state)
action = q_value.max(1)[1].item()
else:
action = random.randrange(self.action_dim)
action = random.randrange(self.n_actions)
return action
def update(self):
self.update_policy()

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 73 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 62 KiB

View File

@@ -0,0 +1,88 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-29 10:37:32
LastEditor: John
LastEditTime: 2021-05-04 22:35:56
Discription:
Environment:
'''
import sys
import os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import datetime
import numpy as np
import torch
import gym
from common.utils import save_results,make_dir
from common.utils import plot_rewards
from HierarchicalDQN.agent import HierarchicalDQN
from HierarchicalDQN.train import train,test
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
algo_name = "Hierarchical DQN" # 算法名称
env_name = 'CartPole-v0' # 环境名称
class HierarchicalDQNConfig:
def __init__(self):
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.train_eps = 300 # 训练的episode数目
self.test_eps = 50 # 测试的episode数目
self.gamma = 0.99
self.epsilon_start = 1 # start epsilon of e-greedy policy
self.epsilon_end = 0.01
self.epsilon_decay = 200
self.lr = 0.0001 # learning rate
self.memory_capacity = 10000 # Replay Memory capacity
self.batch_size = 32
self.target_update = 2 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层
class PlotConfig:
''' 绘图相关参数设置
'''
def __init__(self) -> None:
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env_name)
env.seed(seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
agent = HierarchicalDQN(n_states,n_actions,cfg)
return env,agent
if __name__ == "__main__":
cfg = HierarchicalDQNConfig()
plot_cfg = PlotConfig()
# 训练
env, agent = env_agent_config(cfg, seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=plot_cfg.model_path) # 保存模型
save_results(rewards, ma_rewards, tag='train',
path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
# 测试
env, agent = env_agent_config(cfg, seed=10)
agent.load(path=plot_cfg.model_path) # 导入模型
rewards, ma_rewards = test(cfg, env, agent)
save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果

File diff suppressed because one or more lines are too long

View File

@@ -1,146 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-29 10:37:32
LastEditor: John
LastEditTime: 2021-05-04 22:35:56
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import datetime
import numpy as np
import torch
import gym
from common.utils import save_results,make_dir
from common.plot import plot_rewards
from HierarchicalDQN.agent import HierarchicalDQN
curr_time = datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S") # obtain current time
class HierarchicalDQNConfig:
def __init__(self):
self.algo = "H-DQN" # name of algo
self.env = 'CartPole-v0'
self.result_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/models/' # path to save models
self.train_eps = 300 # 训练的episode数目
self.eval_eps = 50 # 测试的episode数目
self.gamma = 0.99
self.epsilon_start = 1 # start epsilon of e-greedy policy
self.epsilon_end = 0.01
self.epsilon_decay = 200
self.lr = 0.0001 # learning rate
self.memory_capacity = 10000 # Replay Memory capacity
self.batch_size = 32
self.target_update = 2 # target net的更新频率
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
self.hidden_dim = 256 # dimension of hidden layer
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env)
env.seed(seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = HierarchicalDQN(state_dim,action_dim,cfg)
return env,agent
def train(cfg, env, agent):
print('Start to train !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = [] # moveing average reward
for i_ep in range(cfg.train_eps):
state = env.reset()
done = False
ep_reward = 0
while not done:
goal = agent.set_goal(state)
onehot_goal = agent.to_onehot(goal)
meta_state = state
extrinsic_reward = 0
while not done and goal != np.argmax(state):
goal_state = np.concatenate([state, onehot_goal])
action = agent.choose_action(goal_state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
extrinsic_reward += reward
intrinsic_reward = 1.0 if goal == np.argmax(
next_state) else 0.0
agent.memory.push(goal_state, action, intrinsic_reward, np.concatenate(
[next_state, onehot_goal]), done)
state = next_state
agent.update()
agent.meta_memory.push(meta_state, goal, extrinsic_reward, state, done)
print('Episode:{}/{}, Reward:{}, Loss:{:.2f}, Meta_Loss:{:.2f}'.format(i_ep+1, cfg.train_eps, ep_reward,agent.loss_numpy ,agent.meta_loss_numpy ))
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('Complete training')
return rewards, ma_rewards
def eval(cfg, env, agent):
print('Start to eval !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = [] # moveing average reward
for i_ep in range(cfg.train_eps):
state = env.reset()
done = False
ep_reward = 0
while not done:
goal = agent.set_goal(state)
onehot_goal = agent.to_onehot(goal)
extrinsic_reward = 0
while not done and goal != np.argmax(state):
goal_state = np.concatenate([state, onehot_goal])
action = agent.choose_action(goal_state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
extrinsic_reward += reward
state = next_state
agent.update()
print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward}, Loss:{agent.loss_numpy:.2f}, Meta_Loss:{agent.meta_loss_numpy:.2f}')
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('Complete training')
return rewards, ma_rewards
if __name__ == "__main__":
cfg = HierarchicalDQNConfig()
# train
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
plot_rewards(rewards, ma_rewards, tag="train",
algo=cfg.algo, path=cfg.result_path)
# eval
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)

View File

@@ -0,0 +1,77 @@
import sys
import os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import numpy as np
def train(cfg, env, agent):
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.train_eps):
state = env.reset()
done = False
ep_reward = 0
while not done:
goal = agent.set_goal(state)
onehot_goal = agent.to_onehot(goal)
meta_state = state
extrinsic_reward = 0
while not done and goal != np.argmax(state):
goal_state = np.concatenate([state, onehot_goal])
action = agent.choose_action(goal_state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
extrinsic_reward += reward
intrinsic_reward = 1.0 if goal == np.argmax(
next_state) else 0.0
agent.memory.push(goal_state, action, intrinsic_reward, np.concatenate(
[next_state, onehot_goal]), done)
state = next_state
agent.update()
if (i_ep+1)%10 == 0:
print(f'回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward}Loss:{agent.loss_numpy:.2f} Meta_Loss:{agent.meta_loss_numpy:.2f}')
agent.meta_memory.push(meta_state, goal, extrinsic_reward, state, done)
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('完成训练!')
return rewards, ma_rewards
def test(cfg, env, agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.train_eps):
state = env.reset()
done = False
ep_reward = 0
while not done:
goal = agent.set_goal(state)
onehot_goal = agent.to_onehot(goal)
extrinsic_reward = 0
while not done and goal != np.argmax(state):
goal_state = np.concatenate([state, onehot_goal])
action = agent.choose_action(goal_state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
extrinsic_reward += reward
state = next_state
agent.update()
if (i_ep+1)%10 == 0:
print(f'回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward}Loss:{agent.loss_numpy:.2f} Meta_Loss:{agent.meta_loss_numpy:.2f}')
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('完成训练!')
return rewards, ma_rewards

View File

@@ -45,9 +45,9 @@ def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env)
env = CliffWalkingWapper(env)
env.seed(seed) # 设置随机种子
n_states = env.observation_space.n # 状态维度
n_actions = env.action_space.n # 动作维度
agent = QLearning(n_states,n_actions,cfg)
state_dim = env.observation_space.n # 状态维度
action_dim = env.action_space.n # 动作维度
agent = QLearning(state_dim,action_dim,cfg)
return env,agent
def train(cfg,env,agent):

View File

@@ -46,3 +46,5 @@ python 3.7、pytorch 1.6.0-1.8.1、gym 0.17.0-0.19.0
[RL-Adventure-2](https://github.com/higgsfield/RL-Adventure-2)
[RL-Adventure](https://github.com/higgsfield/RL-Adventure)
[Google 开源项目风格指南——中文版](https://zh-google-styleguide.readthedocs.io/en/latest/google-python-styleguide/python_style_rules/#comments)

View File

@@ -5,7 +5,7 @@ Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-04-29 12:53:58
LastEditor: JiangJi
LastEditTime: 2021-04-29 12:57:29
LastEditTime: 2021-11-19 18:04:19
Discription:
Environment:
'''
@@ -35,12 +35,12 @@ class ValueNet(nn.Module):
class SoftQNet(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3):
def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3):
super(SoftQNet, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, 1)
self.linear1 = nn.Linear(state_dim + action_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
@@ -54,20 +54,20 @@ class SoftQNet(nn.Module):
class PolicyNet(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3, log_std_min=-20, log_std_max=2):
def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3, log_std_min=-20, log_std_max=2):
super(PolicyNet, self).__init__()
self.log_std_min = log_std_min
self.log_std_max = log_std_max
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear1 = nn.Linear(state_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.mean_linear = nn.Linear(hidden_size, num_actions)
self.mean_linear = nn.Linear(hidden_dim, action_dim)
self.mean_linear.weight.data.uniform_(-init_w, init_w)
self.mean_linear.bias.data.uniform_(-init_w, init_w)
self.log_std_linear = nn.Linear(hidden_size, num_actions)
self.log_std_linear = nn.Linear(hidden_dim, action_dim)
self.log_std_linear.weight.data.uniform_(-init_w, init_w)
self.log_std_linear.bias.data.uniform_(-init_w, init_w)

View File

@@ -15,15 +15,15 @@ import torch.nn.functional as F
from torch.distributions import Categorical
class MLP(nn.Module):
def __init__(self, n_states,n_actions,hidden_dim=128):
def __init__(self, input_dim,output_dim,hidden_dim=128):
""" 初始化q网络为全连接网络
n_states: 输入的特征数即环境的状态数
n_actions: 输出的动作维度
input_dim: 输入的特征数即环境的状态数
output_dim: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
self.fc1 = nn.Linear(input_dim, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
self.fc3 = nn.Linear(hidden_dim, output_dim) # 输出层
def forward(self, x):
# 各层对应的激活函数
@@ -32,10 +32,10 @@ class MLP(nn.Module):
return self.fc3(x)
class Critic(nn.Module):
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
def __init__(self, n_obs, action_dim, hidden_size, init_w=3e-3):
super(Critic, self).__init__()
self.linear1 = nn.Linear(n_obs + n_actions, hidden_size)
self.linear1 = nn.Linear(n_obs + action_dim, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, 1)
# 随机初始化为较小的值
@@ -51,11 +51,11 @@ class Critic(nn.Module):
return x
class Actor(nn.Module):
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
def __init__(self, n_obs, action_dim, hidden_size, init_w=3e-3):
super(Actor, self).__init__()
self.linear1 = nn.Linear(n_obs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, n_actions)
self.linear3 = nn.Linear(hidden_size, action_dim)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
@@ -67,18 +67,18 @@ class Actor(nn.Module):
return x
class ActorCritic(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim=256):
def __init__(self, state_dim, action_dim, hidden_dim=256):
super(ActorCritic, self).__init__()
self.critic = nn.Sequential(
nn.Linear(n_states, hidden_dim),
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
self.actor = nn.Sequential(
nn.Linear(n_states, hidden_dim),
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, n_actions),
nn.Linear(hidden_dim, action_dim),
nn.Softmax(dim=1),
)

View File

@@ -1,5 +1,5 @@
#This code is from openai baseline
#https://github.com/openai/baselines/tree/master/baselines/common/vec_env
# 该代码来自 openai baseline,用于多线程环境
# https://github.com/openai/baselines/tree/master/baselines/common/vec_env
import numpy as np
from multiprocessing import Process, Pipe

View File

@@ -1,38 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-10-07 20:57:11
LastEditor: John
LastEditTime: 2021-09-23 12:23:01
Discription:
Environment:
'''
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.font_manager import FontProperties # 导入字体模块
def plot_rewards(rewards,ma_rewards,plot_cfg,tag='train'):
sns.set()
plt.figure() # 创建一个图形实例,方便同时多画几个图
plt.title("learning curve on {} of {} for {}".format(plot_cfg.device, plot_cfg.algo, plot_cfg.env_name))
plt.xlabel('epsiodes')
plt.plot(rewards,label='rewards')
plt.plot(ma_rewards,label='ma rewards')
plt.legend()
if plot_cfg.save:
plt.savefig(plot_cfg.result_path+"{}_rewards_curve".format(tag))
plt.show()
def plot_losses(losses,algo = "DQN",save=True,path='./'):
sns.set()
plt.figure()
plt.title("loss curve of {}".format(algo))
plt.xlabel('epsiodes')
plt.plot(losses,label='rewards')
plt.legend()
if save:
plt.savefig(path+"losses_curve")
plt.show()

View File

@@ -5,26 +5,87 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-12 16:02:24
LastEditor: John
LastEditTime: 2021-09-11 21:48:49
LastEditTime: 2021-11-30 18:39:19
Discription:
Environment:
'''
import os
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt
import seaborn as sns
def save_results(rewards,ma_rewards,tag='train',path='./results'):
'''save rewards and ma_rewards
from matplotlib.font_manager import FontProperties # 导入字体模块
def chinese_font():
''' 设置中文字体,注意需要根据自己电脑情况更改字体路径,否则还是默认的字体
'''
try:
font = FontProperties(
fname='/System/Library/Fonts/STHeiti Light.ttc', size=15) # fname系统字体路径此处是mac的
except:
font = None
return font
def plot_rewards_cn(rewards, ma_rewards, plot_cfg, tag='train'):
''' 中文画图
'''
sns.set()
plt.figure()
plt.title(u"{}环境下{}算法的学习曲线".format(plot_cfg.env_name,
plot_cfg.algo_name), fontproperties=chinese_font())
plt.xlabel(u'回合数', fontproperties=chinese_font())
plt.plot(rewards)
plt.plot(ma_rewards)
plt.legend((u'奖励', u'滑动平均奖励',), loc="best", prop=chinese_font())
if plot_cfg.save:
plt.savefig(plot_cfg.result_path+f"{tag}_rewards_curve_cn")
# plt.show()
def plot_rewards(rewards, ma_rewards, plot_cfg, tag='train'):
sns.set()
plt.figure() # 创建一个图形实例,方便同时多画几个图
plt.title("learning curve on {} of {} for {}".format(
plot_cfg.device, plot_cfg.algo_name, plot_cfg.env_name))
plt.xlabel('epsiodes')
plt.plot(rewards, label='rewards')
plt.plot(ma_rewards, label='ma rewards')
plt.legend()
if plot_cfg.save:
plt.savefig(plot_cfg.result_path+"{}_rewards_curve".format(tag))
plt.show()
def plot_losses(losses, algo="DQN", save=True, path='./'):
sns.set()
plt.figure()
plt.title("loss curve of {}".format(algo))
plt.xlabel('epsiodes')
plt.plot(losses, label='rewards')
plt.legend()
if save:
plt.savefig(path+"losses_curve")
plt.show()
def save_results(rewards, ma_rewards, tag='train', path='./results'):
''' 保存奖励
'''
np.save(path+'{}_rewards.npy'.format(tag), rewards)
np.save(path+'{}_ma_rewards.npy'.format(tag), ma_rewards)
print('结果保存完毕!')
def make_dir(*paths):
''' 创建文件夹
'''
for path in paths:
Path(path).mkdir(parents=True, exist_ok=True)
def del_empty_dir(*paths):
'''del_empty_dir delete empty folders unders "paths"
''' 删除目录下所有空文件夹
'''
for path in paths:
dirs = os.listdir(path)

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

View File

@@ -1,4 +1,5 @@
## 环境说明
# OpenAi Gym 环境说明
## 基础控制
### [CartPole v0](https://github.com/openai/gym/wiki/CartPole-v0)
@@ -6,6 +7,17 @@
通过向左或向右推车能够实现平衡所以动作空间由两个动作组成。每进行一个step就会给一个reward如果无法保持平衡那么done等于true本次episode失败。理想状态下每个episode至少能进行200个step也就是说每个episode的reward总和至少为200step数目至少为200
### CartPole-v1
```CartPole v1```环境其实跟```CartPole v0```是一模一样的区别在于每回合最大步数max_episode_steps以及奖励阈值reward_threshold如下是相关源码
![](assets/gym_info_20211130180023.png)
这里先解释一下奖励阈值reward_threshold即Gym设置的一个合格标准比如对于```CartPole v0```如果算法能够将奖励收敛到195以上说明该算法合格。但实际上```CartPole v0```的每回合最大步数max_episode_steps是200每步的奖励最大是1也就是每回合最大奖励是200比Gym设置的奖励阈值高。笔者猜测这是Gym可能是给算法学习者们设置的一个参考线而实际中在写算法时并不会用到这个算法阈值所以可以忽略。
再看每回合最大步数,可以看到```CartPole v1```的步数更长,相应的奖励要求更高,可以理解为```v1```是```v0```的难度升级版。
### [Pendulum-v0](https://github.com/openai/gym/wiki/Pendulum-v0)
gym 0.18.0之后版本中Pendulum-v0已经改为Pendulum-v1
@@ -32,3 +44,7 @@
<img src="./assets/image-20201007211858925.png" alt="image-20201007211858925" style="zoom:50%;" />
由于从起点到终点最少需要13步每步得到-1的reward因此最佳训练算法下每个episode下reward总和应该为-13。
## 参考
[Gym环境相关源码](https://github.com/openai/gym/tree/master/gym/envs)