update codes
This commit is contained in:
@@ -14,16 +14,57 @@ LastEditTime: 2021-09-15 13:35:36
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
import random
|
||||
import math
|
||||
import numpy as np
|
||||
from common.memory import ReplayBuffer
|
||||
from common.model import MLP
|
||||
class DQN:
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
|
||||
self.n_actions = n_actions # 总的动作个数
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, state_dim,action_dim,hidden_dim=128):
|
||||
""" 初始化q网络,为全连接网络
|
||||
state_dim: 输入的特征数即环境的状态数
|
||||
action_dim: 输出的动作维度
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
self.fc1 = nn.Linear(state_dim, hidden_dim) # 输入层
|
||||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||||
self.fc3 = nn.Linear(hidden_dim, action_dim) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
return self.fc3(x)
|
||||
|
||||
class ReplayBuffer:
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity # 经验回放的容量
|
||||
self.buffer = [] # 缓冲区
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
|
||||
'''
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
|
||||
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
|
||||
return state, action, reward, next_state, done
|
||||
|
||||
def __len__(self):
|
||||
''' 返回当前存储的量
|
||||
'''
|
||||
return len(self.buffer)
|
||||
|
||||
class DQN:
|
||||
def __init__(self, state_dim, action_dim, cfg):
|
||||
|
||||
self.action_dim = action_dim # 总的动作个数
|
||||
self.device = cfg.device # 设备,cpu或gpu等
|
||||
self.gamma = cfg.gamma # 奖励的折扣因子
|
||||
# e-greedy策略相关参数
|
||||
@@ -32,8 +73,8 @@ class DQN:
|
||||
(cfg.epsilon_start - cfg.epsilon_end) * \
|
||||
math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
|
||||
@@ -49,7 +90,7 @@ class DQN:
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # 选择Q值最大的动作
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
action = random.randrange(self.action_dim)
|
||||
return action
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略
|
||||
|
||||
75
codes/DQN/task0.py
Normal file
75
codes/DQN/task0.py
Normal file
@@ -0,0 +1,75 @@
|
||||
import sys
|
||||
import os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加路径到系统路径
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
from common.utils import save_results, make_dir
|
||||
from common.utils import plot_rewards
|
||||
from DQN.agent import DQN
|
||||
from DQN.train import train,test
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
algo_name = "DQN" # 算法名称
|
||||
env_name = 'CartPole-v0' # 环境名称
|
||||
|
||||
class DQNConfig:
|
||||
def __init__(self):
|
||||
self.algo_name = algo_name # 算法名称
|
||||
self.env_name = env_name # 环境名称
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.train_eps = 200 # 训练的回合数
|
||||
self.eval_eps = 30 # 测试的回合数
|
||||
# 超参数
|
||||
self.gamma = 0.95 # 强化学习中的折扣因子
|
||||
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
|
||||
self.lr = 0.0001 # 学习率
|
||||
self.memory_capacity = 100000 # 经验回放的容量
|
||||
self.batch_size = 64 # mini-batch SGD中的批量大小
|
||||
self.target_update = 4 # 目标网络的更新频率
|
||||
self.hidden_dim = 256 # 网络隐藏层
|
||||
class PlotConfig:
|
||||
def __init__(self) -> None:
|
||||
self.algo = algo_name # 算法名称
|
||||
self.env_name = env_name # 环境名称
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.result_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/results/' # 保存结果的路径
|
||||
self.model_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/models/' # 保存模型的路径
|
||||
self.save = True # 是否保存图片
|
||||
|
||||
def env_agent_config(cfg, seed=1):
|
||||
''' 创建环境和智能体
|
||||
'''
|
||||
env = gym.make(cfg.env_name) # 创建环境
|
||||
env.seed(seed) # 设置随机种子
|
||||
state_dim = env.observation_space.shape[0] # 状态数
|
||||
action_dim = env.action_space.n # 动作数
|
||||
agent = DQN(state_dim, action_dim, cfg) # 创建智能体
|
||||
return env, agent
|
||||
|
||||
|
||||
cfg = DQNConfig()
|
||||
plot_cfg = PlotConfig()
|
||||
# 训练
|
||||
env, agent = env_agent_config(cfg, seed=1)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||
agent.save(path=plot_cfg.model_path) # 保存模型
|
||||
save_results(rewards, ma_rewards, tag='train',
|
||||
path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
|
||||
# 测试
|
||||
env, agent = env_agent_config(cfg, seed=10)
|
||||
agent.load(path=plot_cfg.model_path) # 导入模型
|
||||
rewards, ma_rewards = test(cfg, env, agent)
|
||||
save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果
|
||||
83
codes/DQN/task1.py
Normal file
83
codes/DQN/task1.py
Normal file
@@ -0,0 +1,83 @@
|
||||
import sys
|
||||
import os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加路径到系统路径
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
from common.utils import save_results, make_dir
|
||||
from common.utils import plot_rewards, plot_rewards_cn
|
||||
from DQN.agent import DQN
|
||||
from DQN.train import train,test
|
||||
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
algo_name = "DQN" # 算法名称
|
||||
env_name = 'CartPole-v1' # 环境名称
|
||||
class DQNConfig:
|
||||
''' 算法相关参数设置
|
||||
'''
|
||||
|
||||
def __init__(self):
|
||||
self.algo_name = algo_name # 算法名称
|
||||
self.env_name = env_name # 环境名称
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.train_eps = 200 # 训练的回合数
|
||||
self.eval_eps = 30 # 测试的回合数
|
||||
# 超参数
|
||||
self.gamma = 0.95 # 强化学习中的折扣因子
|
||||
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
|
||||
self.lr = 0.0001 # 学习率
|
||||
self.memory_capacity = 100000 # 经验回放的容量
|
||||
self.batch_size = 64 # mini-batch SGD中的批量大小
|
||||
self.target_update = 4 # 目标网络的更新频率
|
||||
self.hidden_dim = 256 # 网络隐藏层
|
||||
class PlotConfig:
|
||||
''' 绘图相关参数设置
|
||||
'''
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.algo_name = algo_name # 算法名称
|
||||
self.env_name = env_name # 环境名称
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.result_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/results/' # 保存结果的路径
|
||||
self.model_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/models/' # 保存模型的路径
|
||||
self.save = True # 是否保存图片
|
||||
|
||||
|
||||
def env_agent_config(cfg, seed=1):
|
||||
''' 创建环境和智能体
|
||||
'''
|
||||
env = gym.make(cfg.env_name) # 创建环境
|
||||
env.seed(seed) # 设置随机种子
|
||||
state_dim = env.observation_space.shape[0] # 状态数
|
||||
action_dim = env.action_space.n # 动作数
|
||||
agent = DQN(state_dim, action_dim, cfg) # 创建智能体
|
||||
return env, agent
|
||||
|
||||
|
||||
cfg = DQNConfig()
|
||||
plot_cfg = PlotConfig()
|
||||
# 训练
|
||||
env, agent = env_agent_config(cfg, seed=1)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||
agent.save(path=plot_cfg.model_path) # 保存模型
|
||||
save_results(rewards, ma_rewards, tag='train',
|
||||
path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards_cn(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
|
||||
# 测试
|
||||
env, agent = env_agent_config(cfg, seed=10)
|
||||
agent.load(path=plot_cfg.model_path) # 导入模型
|
||||
rewards, ma_rewards = test(cfg, env, agent)
|
||||
save_results(rewards, ma_rewards, tag='test',
|
||||
path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards_cn(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果
|
||||
@@ -38,15 +38,15 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class MLP(nn.Module):\n",
|
||||
" def __init__(self, n_states,n_actions,hidden_dim=128):\n",
|
||||
" def __init__(self, state_dim,action_dim,hidden_dim=128):\n",
|
||||
" \"\"\" 初始化q网络,为全连接网络\n",
|
||||
" n_states: 输入的特征数即环境的状态数\n",
|
||||
" n_actions: 输出的动作维度\n",
|
||||
" state_dim: 输入的特征数即环境的状态数\n",
|
||||
" action_dim: 输出的动作维度\n",
|
||||
" \"\"\"\n",
|
||||
" super(MLP, self).__init__()\n",
|
||||
" self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层\n",
|
||||
" self.fc1 = nn.Linear(state_dim, hidden_dim) # 输入层\n",
|
||||
" self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层\n",
|
||||
" self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层\n",
|
||||
" self.fc3 = nn.Linear(hidden_dim, action_dim) # 输出层\n",
|
||||
" \n",
|
||||
" def forward(self, x):\n",
|
||||
" # 各层对应的激活函数\n",
|
||||
@@ -107,9 +107,9 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class DQN:\n",
|
||||
" def __init__(self, n_states, n_actions, cfg):\n",
|
||||
" def __init__(self, state_dim, action_dim, cfg):\n",
|
||||
"\n",
|
||||
" self.n_actions = n_actions # 总的动作个数\n",
|
||||
" self.action_dim = action_dim # 总的动作个数\n",
|
||||
" self.device = cfg.device # 设备,cpu或gpu等\n",
|
||||
" self.gamma = cfg.gamma # 奖励的折扣因子\n",
|
||||
" # e-greedy策略相关参数\n",
|
||||
@@ -118,8 +118,8 @@
|
||||
" (cfg.epsilon_start - cfg.epsilon_end) * \\\n",
|
||||
" math.exp(-1. * frame_idx / cfg.epsilon_decay)\n",
|
||||
" self.batch_size = cfg.batch_size\n",
|
||||
" self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)\n",
|
||||
" self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)\n",
|
||||
" self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)\n",
|
||||
" self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)\n",
|
||||
" for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net\n",
|
||||
" target_param.data.copy_(param.data)\n",
|
||||
" self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器\n",
|
||||
@@ -135,7 +135,7 @@
|
||||
" q_values = self.policy_net(state)\n",
|
||||
" action = q_values.max(1)[1].item() # 选择Q值最大的动作\n",
|
||||
" else:\n",
|
||||
" action = random.randrange(self.n_actions)\n",
|
||||
" action = random.randrange(self.action_dim)\n",
|
||||
" return action\n",
|
||||
" def update(self):\n",
|
||||
" if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略\n",
|
||||
@@ -211,9 +211,9 @@
|
||||
" '''\n",
|
||||
" env = gym.make(cfg.env) # 创建环境\n",
|
||||
" env.seed(seed) # 设置随机种子\n",
|
||||
" n_states = env.observation_space.shape[0] # 状态数\n",
|
||||
" n_actions = env.action_space.n # 动作数\n",
|
||||
" agent = DQN(n_states,n_actions,cfg) # 创建智能体\n",
|
||||
" state_dim = env.observation_space.shape[0] # 状态数\n",
|
||||
" action_dim = env.action_space.n # 动作数\n",
|
||||
" agent = DQN(state_dim,action_dim,cfg) # 创建智能体\n",
|
||||
" return env,agent"
|
||||
]
|
||||
},
|
||||
@@ -9,63 +9,11 @@ LastEditTime: 2021-09-15 15:34:13
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加路径到系统路径
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
|
||||
from common.utils import save_results, make_dir
|
||||
from common.plot import plot_rewards
|
||||
from DQN.agent import DQN
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
class DQNConfig:
|
||||
def __init__(self):
|
||||
self.algo = "DQN" # 算法名称
|
||||
self.env_name = 'CartPole-v0' # 环境名称
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.train_eps = 200 # 训练的回合数
|
||||
self.eval_eps = 30 # 测试的回合数
|
||||
# 超参数
|
||||
self.gamma = 0.95 # 强化学习中的折扣因子
|
||||
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
|
||||
self.lr = 0.0001 # 学习率
|
||||
self.memory_capacity = 100000 # 经验回放的容量
|
||||
self.batch_size = 64 # mini-batch SGD中的批量大小
|
||||
self.target_update = 4 # 目标网络的更新频率
|
||||
self.hidden_dim = 256 # 网络隐藏层
|
||||
class PlotConfig:
|
||||
def __init__(self) -> None:
|
||||
self.algo = "DQN" # 算法名称
|
||||
self.env_name = 'CartPole-v0' # 环境名称
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||||
'/'+curr_time+'/results/' # 保存结果的路径
|
||||
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||||
'/'+curr_time+'/models/' # 保存模型的路径
|
||||
self.save = True # 是否保存图片
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
''' 创建环境和智能体
|
||||
'''
|
||||
env = gym.make(cfg.env_name) # 创建环境
|
||||
env.seed(seed) # 设置随机种子
|
||||
n_states = env.observation_space.shape[0] # 状态数
|
||||
n_actions = env.action_space.n # 动作数
|
||||
agent = DQN(n_states,n_actions,cfg) # 创建智能体
|
||||
return env,agent
|
||||
|
||||
def train(cfg, env, agent):
|
||||
''' 训练
|
||||
'''
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
@@ -92,9 +40,9 @@ def train(cfg, env, agent):
|
||||
print('完成训练!')
|
||||
return rewards, ma_rewards
|
||||
|
||||
def eval(cfg,env,agent):
|
||||
def test(cfg,env,agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0
|
||||
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
|
||||
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
|
||||
@@ -115,11 +63,64 @@ def eval(cfg,env,agent):
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f"回合:{i_ep+1}/{cfg.eval_eps}, 奖励:{ep_reward:.1f}")
|
||||
print(f"回合:{i_ep+1}/{cfg.eval_eps},奖励:{ep_reward:.1f}")
|
||||
print('完成测试!')
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加路径到系统路径
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
|
||||
from common.utils import save_results, make_dir
|
||||
from common.utils import plot_rewards
|
||||
from DQN.agent import DQN
|
||||
from DQN.train import train
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
class DQNConfig:
|
||||
def __init__(self):
|
||||
self.algo = "DQN" # 算法名称
|
||||
self.env_name = 'CartPole-v0' # 环境名称
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.train_eps = 200 # 训练的回合数
|
||||
self.eval_eps = 30 # 测试的回合数
|
||||
# 超参数
|
||||
self.gamma = 0.95 # 强化学习中的折扣因子
|
||||
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
|
||||
self.lr = 0.0001 # 学习率
|
||||
self.memory_capacity = 100000 # 经验回放的容量
|
||||
self.batch_size = 64 # mini-batch SGD中的批量大小
|
||||
self.target_update = 4 # 目标网络的更新频率
|
||||
self.hidden_dim = 256 # 网络隐藏层
|
||||
class PlotConfig:
|
||||
def __init__(self) -> None:
|
||||
self.algo = "DQN" # 算法名称
|
||||
self.env_name = 'CartPole-v0' # 环境名称
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||||
'/'+curr_time+'/results/' # 保存结果的路径
|
||||
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||||
'/'+curr_time+'/models/' # 保存模型的路径
|
||||
self.save = True # 是否保存图片
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
''' 创建环境和智能体
|
||||
'''
|
||||
env = gym.make(cfg.env_name) # 创建环境
|
||||
env.seed(seed) # 设置随机种子
|
||||
state_dim = env.observation_space.shape[0] # 状态数
|
||||
action_dim = env.action_space.n # 动作数
|
||||
agent = DQN(state_dim,action_dim,cfg) # 创建智能体
|
||||
return env,agent
|
||||
|
||||
cfg = DQNConfig()
|
||||
plot_cfg = PlotConfig()
|
||||
# 训练
|
||||
@@ -132,6 +133,6 @@ if __name__ == "__main__":
|
||||
# 测试
|
||||
env,agent = env_agent_config(cfg,seed=10)
|
||||
agent.load(path=plot_cfg.model_path) # 导入模型
|
||||
rewards,ma_rewards = eval(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards,ma_rewards, plot_cfg, tag="eval") # 画出结果
|
||||
rewards,ma_rewards = test(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='test',path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards,ma_rewards, plot_cfg, tag="test") # 画出结果
|
||||
Reference in New Issue
Block a user