add DQN_cnn
This commit is contained in:
107
codes/DQN_cnn/agent.py
Normal file
107
codes/DQN_cnn/agent.py
Normal file
@@ -0,0 +1,107 @@
|
|||||||
|
import random
|
||||||
|
import math
|
||||||
|
import torch
|
||||||
|
import torch.optim as optim
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from DQN_cnn.memory import ReplayBuffer
|
||||||
|
from DQN_cnn.model import CNN
|
||||||
|
|
||||||
|
|
||||||
|
class DQNcnn:
|
||||||
|
def __init__(self, screen_height,screen_width, action_dim, cfg):
|
||||||
|
|
||||||
|
self.device = cfg.device
|
||||||
|
self.action_dim = action_dim
|
||||||
|
self.gamma = cfg.gamma
|
||||||
|
# e-greedy策略相关参数
|
||||||
|
self.actions_count = 0
|
||||||
|
self.epsilon = 0
|
||||||
|
self.epsilon_start = cfg.epsilon_start
|
||||||
|
self.epsilon_end = cfg.epsilon_end
|
||||||
|
self.epsilon_decay = cfg.epsilon_decay
|
||||||
|
self.batch_size = cfg.batch_size
|
||||||
|
self.policy_net = CNN(screen_height, screen_width,
|
||||||
|
action_dim).to(self.device)
|
||||||
|
self.target_net = CNN(screen_height, screen_width,
|
||||||
|
action_dim).to(self.device)
|
||||||
|
self.target_net.load_state_dict(self.policy_net.state_dict()) # target_net的初始模型参数完全复制policy_net
|
||||||
|
self.target_net.eval() # 不启用 BatchNormalization 和 Dropout
|
||||||
|
self.optimizer = optim.RMSprop(self.policy_net.parameters(),lr = cfg.lr) # 可查parameters()与state_dict()的区别,前者require_grad=True
|
||||||
|
self.loss = 0
|
||||||
|
self.memory = ReplayBuffer(cfg.memory_capacity)
|
||||||
|
|
||||||
|
|
||||||
|
def choose_action(self, state):
|
||||||
|
'''选择动作
|
||||||
|
Args:
|
||||||
|
state [array]: [description]
|
||||||
|
Returns:
|
||||||
|
action [array]: [description]
|
||||||
|
'''
|
||||||
|
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||||
|
math.exp(-1. * self.actions_count / self.epsilon_decay)
|
||||||
|
self.actions_count += 1
|
||||||
|
if random.random() > self.epsilon:
|
||||||
|
with torch.no_grad():
|
||||||
|
q_value = self.policy_net(state) # q_value比如tensor([[-0.2522, 0.3887]])
|
||||||
|
# tensor.max(1)返回每行的最大值以及对应的下标,
|
||||||
|
# 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
|
||||||
|
# 所以tensor.max(1)[1]返回最大值对应的下标,即action
|
||||||
|
action = q_value.max(1)[1].view(1, 1) # 注意这里action是个张量,如tensor([1])
|
||||||
|
return action
|
||||||
|
else:
|
||||||
|
return torch.tensor([[random.randrange(self.action_dim)]], device=self.device, dtype=torch.long)
|
||||||
|
|
||||||
|
def update(self):
|
||||||
|
if len(self.memory) < self.batch_size:
|
||||||
|
return
|
||||||
|
transitions = self.memory.sample(self.batch_size)
|
||||||
|
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
|
||||||
|
# detailed explanation). This converts batch-array of Transitions
|
||||||
|
# to Transition of batch-arrays.
|
||||||
|
batch = self.memory.Transition(*zip(*transitions))
|
||||||
|
|
||||||
|
# Compute a mask of non-final states and concatenate the batch elements
|
||||||
|
# (a final state would've been the one after which simulation ended)
|
||||||
|
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
|
||||||
|
batch.state_)), device=self.device, dtype=torch.bool)
|
||||||
|
|
||||||
|
non_final_state_s = torch.cat([s for s in batch.state_
|
||||||
|
if s is not None])
|
||||||
|
state_batch = torch.cat(batch.state)
|
||||||
|
action_batch = torch.cat(batch.action)
|
||||||
|
reward_batch = torch.cat(batch.reward) # tensor([1., 1.,...,])
|
||||||
|
|
||||||
|
|
||||||
|
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
|
||||||
|
# columns of actions taken. These are the actions which would've been taken
|
||||||
|
# for each batch state according to policy_net
|
||||||
|
state_action_values = self.policy_net(
|
||||||
|
state_batch).gather(1, action_batch) #tensor([[ 1.1217],...,[ 0.8314]])
|
||||||
|
|
||||||
|
# Compute V(s_{t+1}) for all next states.
|
||||||
|
# Expected values of actions for non_final_state_s are computed based
|
||||||
|
# on the "older" target_net; selecting their best reward with max(1)[0].
|
||||||
|
# This is merged based on the mask, such that we'll have either the expected
|
||||||
|
# state value or 0 in case the state was final.
|
||||||
|
state__values = torch.zeros(self.batch_size, device=self.device)
|
||||||
|
|
||||||
|
state__values[non_final_mask] = self.target_net(
|
||||||
|
non_final_state_s).max(1)[0].detach()
|
||||||
|
|
||||||
|
# Compute the expected Q values
|
||||||
|
expected_state_action_values = (state__values * self.gamma) + reward_batch # tensor([0.9685, 0.9683,...,])
|
||||||
|
|
||||||
|
# Compute Huber loss
|
||||||
|
self.loss = F.smooth_l1_loss(
|
||||||
|
state_action_values, expected_state_action_values.unsqueeze(1)) # .unsqueeze增加一个维度
|
||||||
|
# Optimize the model
|
||||||
|
self.optimizer.zero_grad() # zero_grad clears old gradients from the last step (otherwise you’d just accumulate the gradients from all loss.backward() calls).
|
||||||
|
self.loss.backward() # loss.backward() computes the derivative of the loss w.r.t. the parameters (or anything requiring gradients) using backpropagation.
|
||||||
|
for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||||
|
param.grad.data.clamp_(-1, 1)
|
||||||
|
self.optimizer.step() # causes the optimizer to take a step based on the gradients of the parameters.
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
dqn = DQN()
|
||||||
66
codes/DQN_cnn/env.py
Normal file
66
codes/DQN_cnn/env.py
Normal file
@@ -0,0 +1,66 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# coding=utf-8
|
||||||
|
'''
|
||||||
|
@Author: John
|
||||||
|
@Email: johnjim0816@gmail.com
|
||||||
|
@Date: 2020-06-11 10:02:35
|
||||||
|
@LastEditor: John
|
||||||
|
@LastEditTime: 2020-06-11 16:57:34
|
||||||
|
@Discription:
|
||||||
|
@Environment: python 3.7.7
|
||||||
|
'''
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torchvision.transforms as T
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
resize = T.Compose([T.ToPILImage(),
|
||||||
|
T.Resize(40, interpolation=Image.CUBIC),
|
||||||
|
T.ToTensor()])
|
||||||
|
|
||||||
|
|
||||||
|
def get_cart_location(env,screen_width):
|
||||||
|
world_width = env.x_threshold * 2
|
||||||
|
scale = screen_width / world_width
|
||||||
|
return int(env.state[0] * scale + screen_width / 2.0) # MIDDLE OF CART
|
||||||
|
|
||||||
|
def get_screen(env,device):
|
||||||
|
# Returned screen requested by gym is 400x600x3, but is sometimes larger
|
||||||
|
# such as 800x1200x3. Transpose it into torch order (CHW).
|
||||||
|
screen = env.render(mode='rgb_array').transpose((2, 0, 1))
|
||||||
|
# Cart is in the lower half, so strip off the top and bottom of the screen
|
||||||
|
_, screen_height, screen_width = screen.shape
|
||||||
|
screen = screen[:, int(screen_height*0.4):int(screen_height * 0.8)]
|
||||||
|
view_width = int(screen_width * 0.6)
|
||||||
|
cart_location = get_cart_location(env,screen_width)
|
||||||
|
if cart_location < view_width // 2:
|
||||||
|
slice_range = slice(view_width)
|
||||||
|
elif cart_location > (screen_width - view_width // 2):
|
||||||
|
slice_range = slice(-view_width, None)
|
||||||
|
else:
|
||||||
|
slice_range = slice(cart_location - view_width // 2,
|
||||||
|
cart_location + view_width // 2)
|
||||||
|
# Strip off the edges, so that we have a square image centered on a cart
|
||||||
|
screen = screen[:, :, slice_range]
|
||||||
|
# Convert to float, rescale, convert to torch tensor
|
||||||
|
# (this doesn't require a copy)
|
||||||
|
screen = np.ascontiguousarray(screen, dtype=np.float32) / 255
|
||||||
|
screen = torch.from_numpy(screen)
|
||||||
|
# Resize, and add a batch dimension (BCHW)
|
||||||
|
return resize(screen).unsqueeze(0).to(device)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
import gym
|
||||||
|
env = gym.make('CartPole-v0').unwrapped
|
||||||
|
# if gpu is to be used
|
||||||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
env.reset()
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
plt.figure()
|
||||||
|
plt.imshow(get_screen(env,device).cpu().squeeze(0).permute(1, 2, 0).numpy(),
|
||||||
|
interpolation='none')
|
||||||
|
plt.title('Example extracted screen')
|
||||||
|
plt.show()
|
||||||
111
codes/DQN_cnn/main.py
Normal file
111
codes/DQN_cnn/main.py
Normal file
@@ -0,0 +1,111 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# coding=utf-8
|
||||||
|
'''
|
||||||
|
@Author: John
|
||||||
|
@Email: johnjim0816@gmail.com
|
||||||
|
@Date: 2020-06-11 10:01:09
|
||||||
|
@LastEditor: John
|
||||||
|
LastEditTime: 2021-03-23 20:43:28
|
||||||
|
@Discription:
|
||||||
|
@Environment: python 3.7.7
|
||||||
|
'''
|
||||||
|
import sys,os
|
||||||
|
sys.path.append(os.getcwd()) # add current terminal path to sys.path
|
||||||
|
import gym
|
||||||
|
import torch
|
||||||
|
import datetime
|
||||||
|
from DQN_cnn.env import get_screen
|
||||||
|
from DQN_cnn.agent import DQNcnn
|
||||||
|
from common.plot import plot_rewards
|
||||||
|
from common.utils import save_results
|
||||||
|
|
||||||
|
sys.path.append(os.getcwd()) # add current terminal path to sys.path
|
||||||
|
|
||||||
|
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||||
|
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # path to save model
|
||||||
|
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"):
|
||||||
|
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||||||
|
if not os.path.exists(SAVED_MODEL_PATH):
|
||||||
|
os.mkdir(SAVED_MODEL_PATH)
|
||||||
|
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # path to save rewards
|
||||||
|
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"):
|
||||||
|
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||||||
|
if not os.path.exists(RESULT_PATH):
|
||||||
|
os.mkdir(RESULT_PATH)
|
||||||
|
|
||||||
|
class DQNcnnConfig:
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.algo = "DQN_cnn" # name of algo
|
||||||
|
self.gamma = 0.99
|
||||||
|
self.epsilon_start = 0.95 # e-greedy策略的初始epsilon
|
||||||
|
self.epsilon_end = 0.05
|
||||||
|
self.epsilon_decay = 200
|
||||||
|
self.lr = 0.01 # leanring rate
|
||||||
|
self.memory_capacity = 10000 # Replay Memory容量
|
||||||
|
self.batch_size = 64
|
||||||
|
self.train_eps = 250 # 训练的episode数目
|
||||||
|
self.train_steps = 200 # 训练每个episode的最大长度
|
||||||
|
self.target_update = 4 # target net的更新频率
|
||||||
|
self.eval_eps = 20 # 测试的episode数目
|
||||||
|
self.eval_steps = 200 # 测试每个episode的最大长度
|
||||||
|
self.hidden_dim = 128 # 神经网络隐藏层维度
|
||||||
|
self.device = torch.device(
|
||||||
|
"cuda" if torch.cuda.is_available() else "cpu") # if gpu is to be used
|
||||||
|
|
||||||
|
def train(cfg, env, agent):
|
||||||
|
rewards = []
|
||||||
|
ma_rewards = []
|
||||||
|
for i_episode in range(cfg.train_eps):
|
||||||
|
# Initialize the environment and state
|
||||||
|
env.reset()
|
||||||
|
last_screen = get_screen(env, cfg.device)
|
||||||
|
current_screen = get_screen(env, cfg.device)
|
||||||
|
state = current_screen - last_screen
|
||||||
|
ep_reward = 0
|
||||||
|
for i_step in range(cfg.train_steps+1):
|
||||||
|
# Select and perform an action
|
||||||
|
action = agent.choose_action(state)
|
||||||
|
_, reward, done, _ = env.step(action.item())
|
||||||
|
ep_reward += reward
|
||||||
|
reward = torch.tensor([reward], device=cfg.device)
|
||||||
|
# Observe new state
|
||||||
|
last_screen = current_screen
|
||||||
|
current_screen = get_screen(env, cfg.device)
|
||||||
|
if done:
|
||||||
|
break
|
||||||
|
state_ = current_screen - last_screen
|
||||||
|
# Store the transition in memory
|
||||||
|
agent.memory.push(state, action, state_, reward)
|
||||||
|
# Move to the next state
|
||||||
|
state = state_
|
||||||
|
# Perform one step of the optimization (on the target network)
|
||||||
|
agent.update()
|
||||||
|
# Update the target network, copying all weights and biases in DQN
|
||||||
|
if i_episode % cfg.target_update == 0:
|
||||||
|
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||||
|
print('Episode:{}/{}, Reward:{}, Steps:{}, Explore:{:.2f}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,i_step+1,agent.epsilon,done))
|
||||||
|
rewards.append(ep_reward)
|
||||||
|
if ma_rewards:
|
||||||
|
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||||
|
else:
|
||||||
|
ma_rewards.append(ep_reward)
|
||||||
|
return rewards,ma_rewards
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
cfg = DQNcnnConfig()
|
||||||
|
# Get screen size so that we can initialize layers correctly based on shape
|
||||||
|
# returned from AI gym. Typical dimensions at this point are close to 3x40x90
|
||||||
|
# which is the result of a clamped and down-scaled render buffer in get_screen(env,device)
|
||||||
|
# 因为这里环境的state需要从默认的向量改为图像,所以要unwrapped更改state
|
||||||
|
env = gym.make('CartPole-v0').unwrapped
|
||||||
|
env.reset()
|
||||||
|
init_screen = get_screen(env, cfg.device)
|
||||||
|
_, _, screen_height, screen_width = init_screen.shape
|
||||||
|
# Get number of actions from gym action space
|
||||||
|
action_dim = env.action_space.n
|
||||||
|
agent = DQNcnn(screen_height, screen_width,
|
||||||
|
action_dim, cfg)
|
||||||
|
rewards,ma_rewards = train(cfg,env,agent)
|
||||||
|
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||||||
|
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
|
||||||
35
codes/DQN_cnn/memory.py
Normal file
35
codes/DQN_cnn/memory.py
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# coding=utf-8
|
||||||
|
'''
|
||||||
|
@Author: John
|
||||||
|
@Email: johnjim0816@gmail.com
|
||||||
|
@Date: 2020-06-11 09:42:44
|
||||||
|
@LastEditor: John
|
||||||
|
LastEditTime: 2021-03-23 20:38:41
|
||||||
|
@Discription:
|
||||||
|
@Environment: python 3.7.7
|
||||||
|
'''
|
||||||
|
from collections import namedtuple
|
||||||
|
import random
|
||||||
|
|
||||||
|
class ReplayBuffer(object):
|
||||||
|
|
||||||
|
def __init__(self, capacity):
|
||||||
|
self.capacity = capacity
|
||||||
|
self.buffer = []
|
||||||
|
self.position = 0
|
||||||
|
self.Transition = namedtuple('Transition',
|
||||||
|
('state', 'action', 'state_', 'reward'))
|
||||||
|
|
||||||
|
def push(self, *args):
|
||||||
|
"""Saves a transition."""
|
||||||
|
if len(self.buffer) < self.capacity:
|
||||||
|
self.buffer.append(None)
|
||||||
|
self.buffer[self.position] = self.Transition(*args)
|
||||||
|
self.position = (self.position + 1) % self.capacity
|
||||||
|
|
||||||
|
def sample(self, batch_size):
|
||||||
|
return random.sample(self.buffer, batch_size)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.buffer)
|
||||||
41
codes/DQN_cnn/model.py
Normal file
41
codes/DQN_cnn/model.py
Normal file
@@ -0,0 +1,41 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# coding=utf-8
|
||||||
|
'''
|
||||||
|
@Author: John
|
||||||
|
@Email: johnjim0816@gmail.com
|
||||||
|
@Date: 2020-06-11 12:18:12
|
||||||
|
@LastEditor: John
|
||||||
|
@LastEditTime: 2020-06-11 17:23:45
|
||||||
|
@Discription:
|
||||||
|
@Environment: python 3.7.7
|
||||||
|
'''
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
class CNN(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, h, w, n_outputs):
|
||||||
|
super(CNN, self).__init__()
|
||||||
|
self.conv1 = nn.Conv2d(3, 16, kernel_size=5, stride=2)
|
||||||
|
self.bn1 = nn.BatchNorm2d(16)
|
||||||
|
self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=2)
|
||||||
|
self.bn2 = nn.BatchNorm2d(32)
|
||||||
|
self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2)
|
||||||
|
self.bn3 = nn.BatchNorm2d(32)
|
||||||
|
|
||||||
|
# Number of Linear input connections depends on output of conv2d layers
|
||||||
|
# and therefore the input image size, so compute it.
|
||||||
|
def conv2d_size_out(size, kernel_size = 5, stride = 2):
|
||||||
|
return (size - (kernel_size - 1) - 1) // stride + 1
|
||||||
|
convw = conv2d_size_out(conv2d_size_out(conv2d_size_out(w)))
|
||||||
|
convh = conv2d_size_out(conv2d_size_out(conv2d_size_out(h)))
|
||||||
|
linear_input_size = convw * convh * 32
|
||||||
|
self.head = nn.Linear(linear_input_size, n_outputs)
|
||||||
|
|
||||||
|
# Called with either one element to determine next action, or a batch
|
||||||
|
# during optimization. Returns tensor([[left0exp,right0exp]...]).
|
||||||
|
def forward(self, x):
|
||||||
|
x = F.relu(self.bn1(self.conv1(x)))
|
||||||
|
x = F.relu(self.bn2(self.conv2(x)))
|
||||||
|
x = F.relu(self.bn3(self.conv3(x)))
|
||||||
|
return self.head(x.view(x.size(0), -1))
|
||||||
@@ -30,7 +30,7 @@ python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.18.0
|
|||||||
| [Q-Learning](./QLearning) | | [CliffWalking-v0](./envs/gym_info.md) | |
|
| [Q-Learning](./QLearning) | | [CliffWalking-v0](./envs/gym_info.md) | |
|
||||||
| [Sarsa](./Sarsa) | | [Racetrack](./envs/racetrack_env.md) | |
|
| [Sarsa](./Sarsa) | | [Racetrack](./envs/racetrack_env.md) | |
|
||||||
| [DQN](./DQN) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
|
| [DQN](./DQN) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | |
|
||||||
| DQN-cnn | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | 与DQN相比使用了CNN而不是全链接网络 |
|
| [DQN-cnn](./DQN_cnn) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | 与DQN相比使用了CNN而不是全链接网络 |
|
||||||
| [DoubleDQN](./DoubleDQN) | | [CartPole-v0](./envs/gym_info.md) | 效果不好,待改进 |
|
| [DoubleDQN](./DoubleDQN) | | [CartPole-v0](./envs/gym_info.md) | 效果不好,待改进 |
|
||||||
| Hierarchical DQN | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | | |
|
| Hierarchical DQN | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | | |
|
||||||
| [PolicyGradient](./PolicyGradient) | | [CartPole-v0](./envs/gym_info.md) | |
|
| [PolicyGradient](./PolicyGradient) | | [CartPole-v0](./envs/gym_info.md) | |
|
||||||
|
|||||||
Reference in New Issue
Block a user