diff --git a/codes/DQN_cnn/agent.py b/codes/DQN_cnn/agent.py new file mode 100644 index 0000000..de2021c --- /dev/null +++ b/codes/DQN_cnn/agent.py @@ -0,0 +1,107 @@ +import random +import math +import torch +import torch.optim as optim +import torch.nn.functional as F +from DQN_cnn.memory import ReplayBuffer +from DQN_cnn.model import CNN + + +class DQNcnn: + def __init__(self, screen_height,screen_width, action_dim, cfg): + + self.device = cfg.device + self.action_dim = action_dim + self.gamma = cfg.gamma + # e-greedy策略相关参数 + self.actions_count = 0 + self.epsilon = 0 + self.epsilon_start = cfg.epsilon_start + self.epsilon_end = cfg.epsilon_end + self.epsilon_decay = cfg.epsilon_decay + self.batch_size = cfg.batch_size + self.policy_net = CNN(screen_height, screen_width, + action_dim).to(self.device) + self.target_net = CNN(screen_height, screen_width, + action_dim).to(self.device) + self.target_net.load_state_dict(self.policy_net.state_dict()) # target_net的初始模型参数完全复制policy_net + self.target_net.eval() # 不启用 BatchNormalization 和 Dropout + self.optimizer = optim.RMSprop(self.policy_net.parameters(),lr = cfg.lr) # 可查parameters()与state_dict()的区别,前者require_grad=True + self.loss = 0 + self.memory = ReplayBuffer(cfg.memory_capacity) + + + def choose_action(self, state): + '''选择动作 + Args: + state [array]: [description] + Returns: + action [array]: [description] + ''' + self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \ + math.exp(-1. * self.actions_count / self.epsilon_decay) + self.actions_count += 1 + if random.random() > self.epsilon: + with torch.no_grad(): + q_value = self.policy_net(state) # q_value比如tensor([[-0.2522, 0.3887]]) + # tensor.max(1)返回每行的最大值以及对应的下标, + # 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0])) + # 所以tensor.max(1)[1]返回最大值对应的下标,即action + action = q_value.max(1)[1].view(1, 1) # 注意这里action是个张量,如tensor([1]) + return action + else: + return torch.tensor([[random.randrange(self.action_dim)]], device=self.device, dtype=torch.long) + + def update(self): + if len(self.memory) < self.batch_size: + return + transitions = self.memory.sample(self.batch_size) + # Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for + # detailed explanation). This converts batch-array of Transitions + # to Transition of batch-arrays. + batch = self.memory.Transition(*zip(*transitions)) + + # Compute a mask of non-final states and concatenate the batch elements + # (a final state would've been the one after which simulation ended) + non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, + batch.state_)), device=self.device, dtype=torch.bool) + + non_final_state_s = torch.cat([s for s in batch.state_ + if s is not None]) + state_batch = torch.cat(batch.state) + action_batch = torch.cat(batch.action) + reward_batch = torch.cat(batch.reward) # tensor([1., 1.,...,]) + + + # Compute Q(s_t, a) - the model computes Q(s_t), then we select the + # columns of actions taken. These are the actions which would've been taken + # for each batch state according to policy_net + state_action_values = self.policy_net( + state_batch).gather(1, action_batch) #tensor([[ 1.1217],...,[ 0.8314]]) + + # Compute V(s_{t+1}) for all next states. + # Expected values of actions for non_final_state_s are computed based + # on the "older" target_net; selecting their best reward with max(1)[0]. + # This is merged based on the mask, such that we'll have either the expected + # state value or 0 in case the state was final. + state__values = torch.zeros(self.batch_size, device=self.device) + + state__values[non_final_mask] = self.target_net( + non_final_state_s).max(1)[0].detach() + + # Compute the expected Q values + expected_state_action_values = (state__values * self.gamma) + reward_batch # tensor([0.9685, 0.9683,...,]) + + # Compute Huber loss + self.loss = F.smooth_l1_loss( + state_action_values, expected_state_action_values.unsqueeze(1)) # .unsqueeze增加一个维度 + # Optimize the model + self.optimizer.zero_grad() # zero_grad clears old gradients from the last step (otherwise you’d just accumulate the gradients from all loss.backward() calls). + self.loss.backward() # loss.backward() computes the derivative of the loss w.r.t. the parameters (or anything requiring gradients) using backpropagation. + for param in self.policy_net.parameters(): # clip防止梯度爆炸 + param.grad.data.clamp_(-1, 1) + self.optimizer.step() # causes the optimizer to take a step based on the gradients of the parameters. + + +if __name__ == "__main__": + dqn = DQN() diff --git a/codes/DQN_cnn/env.py b/codes/DQN_cnn/env.py new file mode 100644 index 0000000..402eead --- /dev/null +++ b/codes/DQN_cnn/env.py @@ -0,0 +1,66 @@ +#!/usr/bin/env python +# coding=utf-8 +''' +@Author: John +@Email: johnjim0816@gmail.com +@Date: 2020-06-11 10:02:35 +@LastEditor: John +@LastEditTime: 2020-06-11 16:57:34 +@Discription: +@Environment: python 3.7.7 +''' + +import numpy as np +import torch +import torchvision.transforms as T +from PIL import Image + +resize = T.Compose([T.ToPILImage(), + T.Resize(40, interpolation=Image.CUBIC), + T.ToTensor()]) + + +def get_cart_location(env,screen_width): + world_width = env.x_threshold * 2 + scale = screen_width / world_width + return int(env.state[0] * scale + screen_width / 2.0) # MIDDLE OF CART + +def get_screen(env,device): + # Returned screen requested by gym is 400x600x3, but is sometimes larger + # such as 800x1200x3. Transpose it into torch order (CHW). + screen = env.render(mode='rgb_array').transpose((2, 0, 1)) + # Cart is in the lower half, so strip off the top and bottom of the screen + _, screen_height, screen_width = screen.shape + screen = screen[:, int(screen_height*0.4):int(screen_height * 0.8)] + view_width = int(screen_width * 0.6) + cart_location = get_cart_location(env,screen_width) + if cart_location < view_width // 2: + slice_range = slice(view_width) + elif cart_location > (screen_width - view_width // 2): + slice_range = slice(-view_width, None) + else: + slice_range = slice(cart_location - view_width // 2, + cart_location + view_width // 2) + # Strip off the edges, so that we have a square image centered on a cart + screen = screen[:, :, slice_range] + # Convert to float, rescale, convert to torch tensor + # (this doesn't require a copy) + screen = np.ascontiguousarray(screen, dtype=np.float32) / 255 + screen = torch.from_numpy(screen) + # Resize, and add a batch dimension (BCHW) + return resize(screen).unsqueeze(0).to(device) + +if __name__ == "__main__": + + import gym + env = gym.make('CartPole-v0').unwrapped + # if gpu is to be used + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + env.reset() + import matplotlib.pyplot as plt + + plt.figure() + plt.imshow(get_screen(env,device).cpu().squeeze(0).permute(1, 2, 0).numpy(), + interpolation='none') + plt.title('Example extracted screen') + plt.show() \ No newline at end of file diff --git a/codes/DQN_cnn/main.py b/codes/DQN_cnn/main.py new file mode 100644 index 0000000..6e94e25 --- /dev/null +++ b/codes/DQN_cnn/main.py @@ -0,0 +1,111 @@ +#!/usr/bin/env python +# coding=utf-8 +''' +@Author: John +@Email: johnjim0816@gmail.com +@Date: 2020-06-11 10:01:09 +@LastEditor: John +LastEditTime: 2021-03-23 20:43:28 +@Discription: +@Environment: python 3.7.7 +''' +import sys,os +sys.path.append(os.getcwd()) # add current terminal path to sys.path +import gym +import torch +import datetime +from DQN_cnn.env import get_screen +from DQN_cnn.agent import DQNcnn +from common.plot import plot_rewards +from common.utils import save_results + +sys.path.append(os.getcwd()) # add current terminal path to sys.path + +SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time +SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # path to save model +if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): + os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/") +if not os.path.exists(SAVED_MODEL_PATH): + os.mkdir(SAVED_MODEL_PATH) +RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # path to save rewards +if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): + os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/") +if not os.path.exists(RESULT_PATH): + os.mkdir(RESULT_PATH) + +class DQNcnnConfig: + def __init__(self) -> None: + self.algo = "DQN_cnn" # name of algo + self.gamma = 0.99 + self.epsilon_start = 0.95 # e-greedy策略的初始epsilon + self.epsilon_end = 0.05 + self.epsilon_decay = 200 + self.lr = 0.01 # leanring rate + self.memory_capacity = 10000 # Replay Memory容量 + self.batch_size = 64 + self.train_eps = 250 # 训练的episode数目 + self.train_steps = 200 # 训练每个episode的最大长度 + self.target_update = 4 # target net的更新频率 + self.eval_eps = 20 # 测试的episode数目 + self.eval_steps = 200 # 测试每个episode的最大长度 + self.hidden_dim = 128 # 神经网络隐藏层维度 + self.device = torch.device( + "cuda" if torch.cuda.is_available() else "cpu") # if gpu is to be used + +def train(cfg, env, agent): + rewards = [] + ma_rewards = [] + for i_episode in range(cfg.train_eps): + # Initialize the environment and state + env.reset() + last_screen = get_screen(env, cfg.device) + current_screen = get_screen(env, cfg.device) + state = current_screen - last_screen + ep_reward = 0 + for i_step in range(cfg.train_steps+1): + # Select and perform an action + action = agent.choose_action(state) + _, reward, done, _ = env.step(action.item()) + ep_reward += reward + reward = torch.tensor([reward], device=cfg.device) + # Observe new state + last_screen = current_screen + current_screen = get_screen(env, cfg.device) + if done: + break + state_ = current_screen - last_screen + # Store the transition in memory + agent.memory.push(state, action, state_, reward) + # Move to the next state + state = state_ + # Perform one step of the optimization (on the target network) + agent.update() + # Update the target network, copying all weights and biases in DQN + if i_episode % cfg.target_update == 0: + agent.target_net.load_state_dict(agent.policy_net.state_dict()) + print('Episode:{}/{}, Reward:{}, Steps:{}, Explore:{:.2f}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,i_step+1,agent.epsilon,done)) + rewards.append(ep_reward) + if ma_rewards: + ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) + else: + ma_rewards.append(ep_reward) + return rewards,ma_rewards + + +if __name__ == "__main__": + cfg = DQNcnnConfig() + # Get screen size so that we can initialize layers correctly based on shape + # returned from AI gym. Typical dimensions at this point are close to 3x40x90 + # which is the result of a clamped and down-scaled render buffer in get_screen(env,device) + # 因为这里环境的state需要从默认的向量改为图像,所以要unwrapped更改state + env = gym.make('CartPole-v0').unwrapped + env.reset() + init_screen = get_screen(env, cfg.device) + _, _, screen_height, screen_width = init_screen.shape + # Get number of actions from gym action space + action_dim = env.action_space.n + agent = DQNcnn(screen_height, screen_width, + action_dim, cfg) + rewards,ma_rewards = train(cfg,env,agent) + save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH) + plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH) diff --git a/codes/DQN_cnn/memory.py b/codes/DQN_cnn/memory.py new file mode 100644 index 0000000..7359a0c --- /dev/null +++ b/codes/DQN_cnn/memory.py @@ -0,0 +1,35 @@ +#!/usr/bin/env python +# coding=utf-8 +''' +@Author: John +@Email: johnjim0816@gmail.com +@Date: 2020-06-11 09:42:44 +@LastEditor: John +LastEditTime: 2021-03-23 20:38:41 +@Discription: +@Environment: python 3.7.7 +''' +from collections import namedtuple +import random + +class ReplayBuffer(object): + + def __init__(self, capacity): + self.capacity = capacity + self.buffer = [] + self.position = 0 + self.Transition = namedtuple('Transition', + ('state', 'action', 'state_', 'reward')) + + def push(self, *args): + """Saves a transition.""" + if len(self.buffer) < self.capacity: + self.buffer.append(None) + self.buffer[self.position] = self.Transition(*args) + self.position = (self.position + 1) % self.capacity + + def sample(self, batch_size): + return random.sample(self.buffer, batch_size) + + def __len__(self): + return len(self.buffer) diff --git a/codes/DQN_cnn/model.py b/codes/DQN_cnn/model.py new file mode 100644 index 0000000..71e67ca --- /dev/null +++ b/codes/DQN_cnn/model.py @@ -0,0 +1,41 @@ +#!/usr/bin/env python +# coding=utf-8 +''' +@Author: John +@Email: johnjim0816@gmail.com +@Date: 2020-06-11 12:18:12 +@LastEditor: John +@LastEditTime: 2020-06-11 17:23:45 +@Discription: +@Environment: python 3.7.7 +''' +import torch.nn as nn +import torch.nn.functional as F + +class CNN(nn.Module): + + def __init__(self, h, w, n_outputs): + super(CNN, self).__init__() + self.conv1 = nn.Conv2d(3, 16, kernel_size=5, stride=2) + self.bn1 = nn.BatchNorm2d(16) + self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=2) + self.bn2 = nn.BatchNorm2d(32) + self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2) + self.bn3 = nn.BatchNorm2d(32) + + # Number of Linear input connections depends on output of conv2d layers + # and therefore the input image size, so compute it. + def conv2d_size_out(size, kernel_size = 5, stride = 2): + return (size - (kernel_size - 1) - 1) // stride + 1 + convw = conv2d_size_out(conv2d_size_out(conv2d_size_out(w))) + convh = conv2d_size_out(conv2d_size_out(conv2d_size_out(h))) + linear_input_size = convw * convh * 32 + self.head = nn.Linear(linear_input_size, n_outputs) + + # Called with either one element to determine next action, or a batch + # during optimization. Returns tensor([[left0exp,right0exp]...]). + def forward(self, x): + x = F.relu(self.bn1(self.conv1(x))) + x = F.relu(self.bn2(self.conv2(x))) + x = F.relu(self.bn3(self.conv3(x))) + return self.head(x.view(x.size(0), -1)) \ No newline at end of file diff --git a/codes/README.md b/codes/README.md index 72d71f9..7591c98 100644 --- a/codes/README.md +++ b/codes/README.md @@ -30,7 +30,7 @@ python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.18.0 | [Q-Learning](./QLearning) | | [CliffWalking-v0](./envs/gym_info.md) | | | [Sarsa](./Sarsa) | | [Racetrack](./envs/racetrack_env.md) | | | [DQN](./DQN) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | | -| DQN-cnn | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | 与DQN相比使用了CNN而不是全链接网络 | +| [DQN-cnn](./DQN_cnn) | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | 与DQN相比使用了CNN而不是全链接网络 | | [DoubleDQN](./DoubleDQN) | | [CartPole-v0](./envs/gym_info.md) | 效果不好,待改进 | | Hierarchical DQN | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | | | | [PolicyGradient](./PolicyGradient) | | [CartPole-v0](./envs/gym_info.md) | |