add DQN_cnn

This commit is contained in:
JohnJim0816
2021-03-23 21:23:43 +08:00
parent cf4ff96726
commit 2df8d965d2
6 changed files with 361 additions and 1 deletions

111
codes/DQN_cnn/main.py Normal file
View File

@@ -0,0 +1,111 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 10:01:09
@LastEditor: John
LastEditTime: 2021-03-23 20:43:28
@Discription:
@Environment: python 3.7.7
'''
import sys,os
sys.path.append(os.getcwd()) # add current terminal path to sys.path
import gym
import torch
import datetime
from DQN_cnn.env import get_screen
from DQN_cnn.agent import DQNcnn
from common.plot import plot_rewards
from common.utils import save_results
sys.path.append(os.getcwd()) # add current terminal path to sys.path
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # path to save model
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"):
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH):
os.mkdir(SAVED_MODEL_PATH)
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # path to save rewards
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"):
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
if not os.path.exists(RESULT_PATH):
os.mkdir(RESULT_PATH)
class DQNcnnConfig:
def __init__(self) -> None:
self.algo = "DQN_cnn" # name of algo
self.gamma = 0.99
self.epsilon_start = 0.95 # e-greedy策略的初始epsilon
self.epsilon_end = 0.05
self.epsilon_decay = 200
self.lr = 0.01 # leanring rate
self.memory_capacity = 10000 # Replay Memory容量
self.batch_size = 64
self.train_eps = 250 # 训练的episode数目
self.train_steps = 200 # 训练每个episode的最大长度
self.target_update = 4 # target net的更新频率
self.eval_eps = 20 # 测试的episode数目
self.eval_steps = 200 # 测试每个episode的最大长度
self.hidden_dim = 128 # 神经网络隐藏层维度
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # if gpu is to be used
def train(cfg, env, agent):
rewards = []
ma_rewards = []
for i_episode in range(cfg.train_eps):
# Initialize the environment and state
env.reset()
last_screen = get_screen(env, cfg.device)
current_screen = get_screen(env, cfg.device)
state = current_screen - last_screen
ep_reward = 0
for i_step in range(cfg.train_steps+1):
# Select and perform an action
action = agent.choose_action(state)
_, reward, done, _ = env.step(action.item())
ep_reward += reward
reward = torch.tensor([reward], device=cfg.device)
# Observe new state
last_screen = current_screen
current_screen = get_screen(env, cfg.device)
if done:
break
state_ = current_screen - last_screen
# Store the transition in memory
agent.memory.push(state, action, state_, reward)
# Move to the next state
state = state_
# Perform one step of the optimization (on the target network)
agent.update()
# Update the target network, copying all weights and biases in DQN
if i_episode % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
print('Episode:{}/{}, Reward:{}, Steps:{}, Explore:{:.2f}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,i_step+1,agent.epsilon,done))
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
return rewards,ma_rewards
if __name__ == "__main__":
cfg = DQNcnnConfig()
# Get screen size so that we can initialize layers correctly based on shape
# returned from AI gym. Typical dimensions at this point are close to 3x40x90
# which is the result of a clamped and down-scaled render buffer in get_screen(env,device)
# 因为这里环境的state需要从默认的向量改为图像所以要unwrapped更改state
env = gym.make('CartPole-v0').unwrapped
env.reset()
init_screen = get_screen(env, cfg.device)
_, _, screen_height, screen_width = init_screen.shape
# Get number of actions from gym action space
action_dim = env.action_space.n
agent = DQNcnn(screen_height, screen_width,
action_dim, cfg)
rewards,ma_rewards = train(cfg,env,agent)
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)