add DQN_cnn

This commit is contained in:
JohnJim0816
2021-03-23 21:23:43 +08:00
parent cf4ff96726
commit 2df8d965d2
6 changed files with 361 additions and 1 deletions

107
codes/DQN_cnn/agent.py Normal file
View File

@@ -0,0 +1,107 @@
import random
import math
import torch
import torch.optim as optim
import torch.nn.functional as F
from DQN_cnn.memory import ReplayBuffer
from DQN_cnn.model import CNN
class DQNcnn:
def __init__(self, screen_height,screen_width, action_dim, cfg):
self.device = cfg.device
self.action_dim = action_dim
self.gamma = cfg.gamma
# e-greedy策略相关参数
self.actions_count = 0
self.epsilon = 0
self.epsilon_start = cfg.epsilon_start
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.batch_size = cfg.batch_size
self.policy_net = CNN(screen_height, screen_width,
action_dim).to(self.device)
self.target_net = CNN(screen_height, screen_width,
action_dim).to(self.device)
self.target_net.load_state_dict(self.policy_net.state_dict()) # target_net的初始模型参数完全复制policy_net
self.target_net.eval() # 不启用 BatchNormalization 和 Dropout
self.optimizer = optim.RMSprop(self.policy_net.parameters(),lr = cfg.lr) # 可查parameters()与state_dict()的区别前者require_grad=True
self.loss = 0
self.memory = ReplayBuffer(cfg.memory_capacity)
def choose_action(self, state):
'''选择动作
Args:
state [array]: [description]
Returns:
action [array]: [description]
'''
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.actions_count / self.epsilon_decay)
self.actions_count += 1
if random.random() > self.epsilon:
with torch.no_grad():
q_value = self.policy_net(state) # q_value比如tensor([[-0.2522, 0.3887]])
# tensor.max(1)返回每行的最大值以及对应的下标,
# 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
# 所以tensor.max(1)[1]返回最大值对应的下标即action
action = q_value.max(1)[1].view(1, 1) # 注意这里action是个张量如tensor([1])
return action
else:
return torch.tensor([[random.randrange(self.action_dim)]], device=self.device, dtype=torch.long)
def update(self):
if len(self.memory) < self.batch_size:
return
transitions = self.memory.sample(self.batch_size)
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
# detailed explanation). This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = self.memory.Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
batch.state_)), device=self.device, dtype=torch.bool)
non_final_state_s = torch.cat([s for s in batch.state_
if s is not None])
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward) # tensor([1., 1.,...,])
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = self.policy_net(
state_batch).gather(1, action_batch) #tensor([[ 1.1217],...,[ 0.8314]])
# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_state_s are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
state__values = torch.zeros(self.batch_size, device=self.device)
state__values[non_final_mask] = self.target_net(
non_final_state_s).max(1)[0].detach()
# Compute the expected Q values
expected_state_action_values = (state__values * self.gamma) + reward_batch # tensor([0.9685, 0.9683,...,])
# Compute Huber loss
self.loss = F.smooth_l1_loss(
state_action_values, expected_state_action_values.unsqueeze(1)) # .unsqueeze增加一个维度
# Optimize the model
self.optimizer.zero_grad() # zero_grad clears old gradients from the last step (otherwise youd just accumulate the gradients from all loss.backward() calls).
self.loss.backward() # loss.backward() computes the derivative of the loss w.r.t. the parameters (or anything requiring gradients) using backpropagation.
for param in self.policy_net.parameters(): # clip防止梯度爆炸
param.grad.data.clamp_(-1, 1)
self.optimizer.step() # causes the optimizer to take a step based on the gradients of the parameters.
if __name__ == "__main__":
dqn = DQN()

66
codes/DQN_cnn/env.py Normal file
View File

@@ -0,0 +1,66 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 10:02:35
@LastEditor: John
@LastEditTime: 2020-06-11 16:57:34
@Discription:
@Environment: python 3.7.7
'''
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
resize = T.Compose([T.ToPILImage(),
T.Resize(40, interpolation=Image.CUBIC),
T.ToTensor()])
def get_cart_location(env,screen_width):
world_width = env.x_threshold * 2
scale = screen_width / world_width
return int(env.state[0] * scale + screen_width / 2.0) # MIDDLE OF CART
def get_screen(env,device):
# Returned screen requested by gym is 400x600x3, but is sometimes larger
# such as 800x1200x3. Transpose it into torch order (CHW).
screen = env.render(mode='rgb_array').transpose((2, 0, 1))
# Cart is in the lower half, so strip off the top and bottom of the screen
_, screen_height, screen_width = screen.shape
screen = screen[:, int(screen_height*0.4):int(screen_height * 0.8)]
view_width = int(screen_width * 0.6)
cart_location = get_cart_location(env,screen_width)
if cart_location < view_width // 2:
slice_range = slice(view_width)
elif cart_location > (screen_width - view_width // 2):
slice_range = slice(-view_width, None)
else:
slice_range = slice(cart_location - view_width // 2,
cart_location + view_width // 2)
# Strip off the edges, so that we have a square image centered on a cart
screen = screen[:, :, slice_range]
# Convert to float, rescale, convert to torch tensor
# (this doesn't require a copy)
screen = np.ascontiguousarray(screen, dtype=np.float32) / 255
screen = torch.from_numpy(screen)
# Resize, and add a batch dimension (BCHW)
return resize(screen).unsqueeze(0).to(device)
if __name__ == "__main__":
import gym
env = gym.make('CartPole-v0').unwrapped
# if gpu is to be used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
env.reset()
import matplotlib.pyplot as plt
plt.figure()
plt.imshow(get_screen(env,device).cpu().squeeze(0).permute(1, 2, 0).numpy(),
interpolation='none')
plt.title('Example extracted screen')
plt.show()

111
codes/DQN_cnn/main.py Normal file
View File

@@ -0,0 +1,111 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 10:01:09
@LastEditor: John
LastEditTime: 2021-03-23 20:43:28
@Discription:
@Environment: python 3.7.7
'''
import sys,os
sys.path.append(os.getcwd()) # add current terminal path to sys.path
import gym
import torch
import datetime
from DQN_cnn.env import get_screen
from DQN_cnn.agent import DQNcnn
from common.plot import plot_rewards
from common.utils import save_results
sys.path.append(os.getcwd()) # add current terminal path to sys.path
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # path to save model
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"):
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH):
os.mkdir(SAVED_MODEL_PATH)
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # path to save rewards
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"):
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
if not os.path.exists(RESULT_PATH):
os.mkdir(RESULT_PATH)
class DQNcnnConfig:
def __init__(self) -> None:
self.algo = "DQN_cnn" # name of algo
self.gamma = 0.99
self.epsilon_start = 0.95 # e-greedy策略的初始epsilon
self.epsilon_end = 0.05
self.epsilon_decay = 200
self.lr = 0.01 # leanring rate
self.memory_capacity = 10000 # Replay Memory容量
self.batch_size = 64
self.train_eps = 250 # 训练的episode数目
self.train_steps = 200 # 训练每个episode的最大长度
self.target_update = 4 # target net的更新频率
self.eval_eps = 20 # 测试的episode数目
self.eval_steps = 200 # 测试每个episode的最大长度
self.hidden_dim = 128 # 神经网络隐藏层维度
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # if gpu is to be used
def train(cfg, env, agent):
rewards = []
ma_rewards = []
for i_episode in range(cfg.train_eps):
# Initialize the environment and state
env.reset()
last_screen = get_screen(env, cfg.device)
current_screen = get_screen(env, cfg.device)
state = current_screen - last_screen
ep_reward = 0
for i_step in range(cfg.train_steps+1):
# Select and perform an action
action = agent.choose_action(state)
_, reward, done, _ = env.step(action.item())
ep_reward += reward
reward = torch.tensor([reward], device=cfg.device)
# Observe new state
last_screen = current_screen
current_screen = get_screen(env, cfg.device)
if done:
break
state_ = current_screen - last_screen
# Store the transition in memory
agent.memory.push(state, action, state_, reward)
# Move to the next state
state = state_
# Perform one step of the optimization (on the target network)
agent.update()
# Update the target network, copying all weights and biases in DQN
if i_episode % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
print('Episode:{}/{}, Reward:{}, Steps:{}, Explore:{:.2f}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,i_step+1,agent.epsilon,done))
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
return rewards,ma_rewards
if __name__ == "__main__":
cfg = DQNcnnConfig()
# Get screen size so that we can initialize layers correctly based on shape
# returned from AI gym. Typical dimensions at this point are close to 3x40x90
# which is the result of a clamped and down-scaled render buffer in get_screen(env,device)
# 因为这里环境的state需要从默认的向量改为图像所以要unwrapped更改state
env = gym.make('CartPole-v0').unwrapped
env.reset()
init_screen = get_screen(env, cfg.device)
_, _, screen_height, screen_width = init_screen.shape
# Get number of actions from gym action space
action_dim = env.action_space.n
agent = DQNcnn(screen_height, screen_width,
action_dim, cfg)
rewards,ma_rewards = train(cfg,env,agent)
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)

35
codes/DQN_cnn/memory.py Normal file
View File

@@ -0,0 +1,35 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 09:42:44
@LastEditor: John
LastEditTime: 2021-03-23 20:38:41
@Discription:
@Environment: python 3.7.7
'''
from collections import namedtuple
import random
class ReplayBuffer(object):
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
self.Transition = namedtuple('Transition',
('state', 'action', 'state_', 'reward'))
def push(self, *args):
"""Saves a transition."""
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = self.Transition(*args)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
return random.sample(self.buffer, batch_size)
def __len__(self):
return len(self.buffer)

41
codes/DQN_cnn/model.py Normal file
View File

@@ -0,0 +1,41 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 12:18:12
@LastEditor: John
@LastEditTime: 2020-06-11 17:23:45
@Discription:
@Environment: python 3.7.7
'''
import torch.nn as nn
import torch.nn.functional as F
class CNN(nn.Module):
def __init__(self, h, w, n_outputs):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=5, stride=2)
self.bn1 = nn.BatchNorm2d(16)
self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=2)
self.bn2 = nn.BatchNorm2d(32)
self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2)
self.bn3 = nn.BatchNorm2d(32)
# Number of Linear input connections depends on output of conv2d layers
# and therefore the input image size, so compute it.
def conv2d_size_out(size, kernel_size = 5, stride = 2):
return (size - (kernel_size - 1) - 1) // stride + 1
convw = conv2d_size_out(conv2d_size_out(conv2d_size_out(w)))
convh = conv2d_size_out(conv2d_size_out(conv2d_size_out(h)))
linear_input_size = convw * convh * 32
self.head = nn.Linear(linear_input_size, n_outputs)
# Called with either one element to determine next action, or a batch
# during optimization. Returns tensor([[left0exp,right0exp]...]).
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = F.relu(self.bn3(self.conv3(x)))
return self.head(x.view(x.size(0), -1))