init repository
211
docs/chapter1/chapter1.md
Normal file
@@ -0,0 +1,211 @@
|
||||
[toc]
|
||||
# Policy Gradient
|
||||
## Policy Gradient
|
||||
|
||||

|
||||
|
||||
在reinforcement learning 中有3 个components,一个`actor`,一个`environment`,一个`reward function`。
|
||||
|
||||
让机器玩video game时,actor 做的事情就是去操控游戏的摇杆, 比如说向左、向右、开火等操作,environment 就是游戏的主机, 负责控制游戏的画面负责控制说,怪物要怎么移动, 你现在要看到什么画面等等。reward function就是当你做什么事情,发生什么状况的时候,你可以得到多少分数, 比如说杀一只怪兽得到20分等等。
|
||||
|
||||
同样的概念用在围棋上也是一样的,actor 就是alpha Go,它要决定下哪一个位置,environment 就是对手,reward function 就是按照围棋的规则, 赢就是得一分,输就是负一分等等。在reinforcement 里面,environment 跟 reward function 不是你可以控制的,environment 跟reward function 是在开始学习之前,就已经事先给定的。你唯一能做的事情,是调整你的actor,调整你actor 里面的policy,使得它可以得到最大的reward。这个actor 里面会有一个policy, 这个policy 决定了actor 的行为, policy 就是给一个外界的输入,然后它会输出actor 现在应该要执行的行为。
|
||||
|
||||

|
||||
Policy 一般写成 $\pi$。假设你是用 deep learning 的技术来做 reinforcement learning 的话,**policy 就是一个 network**,network 里面就有一堆参数, 我们用 $\theta$ 来代表 $\pi$ 的参数。Network 的 input 就是现在 machine 看到的东西,如果让 machine 打电玩的话, 那 machine 看到的东西,就是游戏的画面。让 machine 看到什么东西,会影响你现在 training 到底好不好 train。
|
||||
|
||||
举例来说,在玩游戏的时候, 也许你觉得游戏的画面,前后是相关的,也许你觉得说,你应该让你的 policy,看从游戏初始到现在这个时间点,所有画面的总和。你可能会觉得你要用到 RNN 来处理它,不过这样子,你会比较难处理。要让你的 machine,你的 policy 看到什么样的画面, 这个是你自己决定的。让你知道说给机器看到什么样的游戏画面,可能是比较有效的。Output 的就是今天机器要采取什么样的行为。
|
||||
上图就是具体的例子,
|
||||
* policy 就是一个 network;
|
||||
* input 就是游戏的画面,它通常就是由 pixels 所组成的;
|
||||
* output 就是看看说现在有那些选项是你可以去执行的,你的 output layer 就有几个 neurons。
|
||||
|
||||
假设你现在可以做的行为就是有 3 个, 你的 output layer 就是有 3 个 neurons。每个 neuron 对应到一个可以采取的行为。input 一个东西后,network 就会给每一个可以采取的行为一个分数。接下来,你把这个分数,当作是概率。 actor 就是看这个概率的分布,根据这个机率的分布,决定它要采取的行为。比如说 70% 会走 left,20% 走 right,10% 开火等等。概率分布不同,你的 actor 采取的行为,就会不一样。
|
||||
|
||||

|
||||
接下来用一个例子来说明 actor 是怎么样跟环境互动的。 首先 actor 会看到一个游戏画面,我们用 $s_1$ 来表示这个游戏画面,它代表游戏初始的画面。接下来 actor 看到这个游戏的初始画面以后,根据它内部的 network,根据它内部的 policy,它就会决定一个 action。那假设它现在决定的 action 是向右。那它决定完 action 以后,它就会得到一个 reward 代表它采取这个 action 以后,它会得到多少的分数。
|
||||
|
||||
我们把一开始的初始画面,写作 $s_1$, 把第一次执行的动作叫做 $a_1$,把第一次执行动作完以后得到的 reward 叫做$r_1$。不同的书会有不同的定义,有人会觉得说这边应该要叫做 $r_2$,这个都可以,你自己看得懂就好。Actor 决定一个的行为以后, 就会看到一个新的游戏画面,这边是 $s_2$。然后把这个 $s_2$ 输入给 actor,这个 actor 决定要开火,然后它可能杀了一只怪,就得到五分。然后这个 process 就反复地持续下去,直到今天走到某一个 timestamp 执行某一个 action,得到 reward 之后, 这个 environment 决定这个游戏结束了。比如说,如果在这个游戏里面,你是控制绿色的船去杀怪,如果你被杀死的话,游戏就结束,或是你把所有的怪都清空,游戏就结束了。
|
||||
|
||||

|
||||
一场游戏,叫做一个 `Episode`。把这个游戏里面,所有得到的 reward 通通总合起来,就是 `Total reward`, 用大 R 来表示它, 这个 actor 它存在的目的就是想办法去 maximize 它可以得到的 reward。
|
||||
|
||||

|
||||
首先,`environment` 也是一个`function`,连那个游戏的主机,也可以把它看作是一个 function,虽然它不一定是 neural network,可能是 rule-based 的规则,但你可以把它看作是一个 function。这个 function,一开始就先吐出一个 state,然后接下来呢,也就是游戏的画面,接下来你的 actor 看到这个游戏画面 $s_1$ 以后,它吐出 $a_1$,然后接下来 environment,把这个 $a_1$ 当作它的输入,然后它再吐出 $s_2$,吐出新的游戏画面。actor 看到新的游戏画面,又再决定新的行为 $a_2$,然后 environment 再看到 $a_2$,再吐出 $s_3$,这个 process 就一直下去,直到 environment 觉得说应该要停止为止。
|
||||
|
||||
在一场游戏里面,我们把 environment 输出的 $s$ 跟 actor 输出的行为 $a$,把这个 $s$ 跟 $a$ 全部串起来, 叫做一个 `Trajectory`,如下式所示。
|
||||
$$
|
||||
\text { Trajectory } \tau=\left\{s_{1}, a_{1}, s_{2}, a_{2}, \cdots, s_{t}, a_{t}\right\}
|
||||
$$
|
||||
|
||||
每一个 trajectory,你可以计算它发生的概率。假设现在 actor 的参数已经被给定了话,就是 $\theta$。根据 $\theta$,你其实可以计算某一个 trajectory 发生的概率,你可以计算某一个回合,某一个 episode 里面, 发生这样子状况的概率。
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
p_{\theta}(\tau)
|
||||
&=p\left(s_{1}\right) p_{\theta}\left(a_{1} | s_{1}\right) p\left(s_{2} | s_{1}, a_{1}\right) p_{\theta}\left(a_{2} | s_{2}\right) p\left(s_{3} | s_{2}, a_{2}\right) \cdots \\
|
||||
&=p\left(s_{1}\right) \prod_{t=1}^{T} p_{\theta}\left(a_{t} | s_{t}\right) p\left(s_{t+1} | s_{t}, a_{t}\right)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
怎么算呢,如上式所示。在假设你 actor 的参数就是 $\theta$ 的情况下,某一个 trajectory $\tau$ 的概率就是这样算的,你先算 environment 输出 $s_1$ 的概率,再计算根据 $s_1$ 执行 $a_1$ 的概率,这是由你 policy 里面的那个 network 参数 $\theta$ 所决定的, 它是一个概率,因为你的 policy 的 network 的 output 是一个 distribution,actor 是根据这个 distribution 去做 sample,决定现在实际上要采取的 action是哪一个。接下来 environment 根据 $a_1$ 跟 $s_1$ 产生 $s_2$,因为 $s_2$ 跟$s_1$ 还是有关系的,下一个游戏画面,跟前一个游戏画面通常还是有关系的,至少要是连续的, 所以给定前一个游戏画面 $s_1$ 和现在 actor 采取的行为 $a_1$,就会产生 $s_2$。
|
||||
这件事情可能是概率,也可能不是概率,这个取决于 environment,就是主机它内部设定是怎样。看今天这个主机在决定,要输出什么样的游戏画面的时候,有没有概率。因为如果没有概率的话,这个游戏的每次的行为都一样,你只要找到一条 path 就可以过关了,这样感觉是蛮无聊的 。所以游戏里面,通常是还是有一些概率的,你做同样的行为,给同样的前一个画面, 下次产生的画面不见得是一样的。Process 就反复继续下去,你就可以计算一个 trajectory $s_1$,$a_1$, $s_2$ , $a_2$ 出现的概率有多大。
|
||||
|
||||
这个概率取决于两件事,
|
||||
* 一部分是 `environment 本身的行为`, environment 的 function 它内部的参数或内部的规则长什么样子。 $p(s_{t+1}|s_t,a_t)$这一项代表的是 environment, environment 这一项通常你是无法控制它的,因为那个是人家写好的,你不能控制它。
|
||||
* 你能控制的是 $p_\theta(a_t|s_t)$。给定一个 $s_t$, actor 要采取什么样的 $a_t$ 会取决于你 actor 的参数 $\theta$, 所以这部分是 actor 可以自己控制的。随着 actor 的行为不同,每个同样的 trajectory, 它就会有不同的出现的概率。
|
||||
|
||||
|
||||

|
||||
|
||||
|
||||
在 reinforcement learning 里面,除了 environment 跟 actor 以外, 还有`reward function`。Reward function 根据在某一个 state 采取的某一个 action 决定说现在这个行为可以得到多少的分数。 它是一个 function,给它 $s_1$,$a_1$,它告诉你得到 $r_1$。给它 $s_2$ ,$a_2$,它告诉你得到 $r_2$。 把所有的小 $r$ 都加起来,我们就得到了 R。
|
||||
|
||||
这边写做 $R(\tau)$ ,代表说是某一个 trajectory $\tau$。在某一场游戏里面, 某一个 episode 里面,我们会得到大 R。**我们要做的事情就是调整 actor 内部的参数 $\theta$, 使得 R 的值越大越好。** 但实际上 reward 并不只是一个 scalar,reward 其实是一个 random variable,R 其实是一个 random variable。 因为 actor 在给定同样的 state 会做什么样的行为,这件事情是有随机性的。environment 在给定同样的 observation 要采取什么样的 action,要产生什么样的 observation,本身也是有随机性的。所以 R 是一个 random variable,你能够计算的,是它的期望值。你能够计算的是说,在给定某一组参数 $\theta$ 的情况下,我们会得到的 R 的期望值是多少。
|
||||
$$
|
||||
\bar{R}_{\theta}=\sum_{\tau} R(\tau) p_{\theta}(\tau)
|
||||
$$
|
||||
这个期望值的算法如上式所示,穷举所有可能的 trajectory $\tau$, 每一个 trajectory $\tau$都有一个概率。比如 $\theta$ 是一个很强的 model, 那它都不会死。如果今天有一个 episode 是很快就死掉了, 它的概率就很小;如果有一个 episode 是都一直没有死, 那它的概率就很大。根据你的 $\theta$, 你可以算出某一个 trajectory $\tau$ 出现的概率,接下来你计算这个 $\tau$ 的 total reward 是多少。 Total reward weighted by 这个 $\tau$ 出现的概率,summation over 所有的 $\tau$,就是期望值。给定一个参数,你会得到的期望值。
|
||||
$$
|
||||
\bar{R}_{\theta}=\sum_{\tau} R(\tau) p_{\theta}(\tau)=E_{\tau \sim p_{\theta}(\tau)}[R(\tau)]
|
||||
$$
|
||||
我们还可以写成上式那样,从 $p_{\theta}(\tau)$ 这个 distribution sample 一个 trajectory $\tau$,然后计算 $R(\tau)$ 的期望值,就是你的 expected reward。 我们要做的事情就是 maximize expected reward。
|
||||
|
||||

|
||||
怎么 maximize expected reward 呢?我们用的就是 `gradient ascent`,因为要让它越大越好,所以是 gradient ascent。Gradient ascent 在 update 参数的时候要加。要进行 gradient ascent,我们先要计算 expected reward $\bar{R}$ 的 gradient 。我们对 $\bar{R}$ 取一个 gradient,这里面只有 $p_{\theta}(\tau)$ 是跟 $\theta$ 有关,所以 gradient 就放在 $p_{\theta}(\tau)$ 这个地方。R 这个 reward function 不需要是 differentiable,我们也可以解接下来的问题。
|
||||
|
||||
举例来说,如果是在 GAN 里面, 这个 R 其实是一个 discriminator,它就算是没有办法微分,也无所谓,你还是可以做接下来的运算。
|
||||
|
||||
取 gradient之后,我们背一个公式,
|
||||
$$
|
||||
\nabla f(x)=f(x)\nabla \log f(x)
|
||||
$$
|
||||
我们可以对$\nabla p_{\theta}(\tau)$ 使用这个公式,然后会得到 $\nabla p_{\theta}(\tau)=p_{\theta}(\tau) \nabla \log p_{\theta}(\tau)$。
|
||||
|
||||
接下来, 分子分母,上下同乘$p_{\theta}(\tau)$,然后我们可以得到下式:
|
||||
$$
|
||||
\frac{\nabla p_{\theta}(\tau)}{p_{\theta}(\tau)}=\log p_{\theta}(\tau)
|
||||
$$
|
||||
|
||||
然后如下式所示, summation over $\tau$,把这个 R 跟这个 log 这两项 weighted by $p_{\theta}(\tau)$, 既然有 weighted by $p_{\theta}(\tau)$,它们就可以被写成这个 expected 的形式。也就是你从 $p_{\theta}(\tau)$ 这个 distribution 里面 sample $\tau$ 出来, 去计算 $R(\tau)$ 乘上 $\nabla\log p_{\theta}(\tau)$,然后把它对所有可能的 $\tau$ 呢, 做 summation,就是这个 expected value 。
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\sum_{\tau} R(\tau) p_{\theta}(\tau) \nabla \log p_{\theta}(\tau) \\
|
||||
=E_{\tau \sim p_{\theta}(\tau)}\left[R(\tau) \nabla \log p_{\theta}(\tau)\right]
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
实际上这个 expected value 你没有办法算,所以你是用 sample 的方式来 sample 一大堆的$\tau$。你 sample $N$笔 $\tau$, 然后每一笔,你都去计算它的这些 value,然后把它全部加起来,最后你就得到你的 gradient。你就可以去 update 你的参数,你就可以去 update 你的 agent,如下式所示。
|
||||
$$
|
||||
\begin{aligned}
|
||||
E_{\tau \sim p_{\theta}(\tau)}\left[R(\tau) \nabla \log p_{\theta}(\tau)\right] &\approx \frac{1}{N} \sum_{n=1}^{N} R\left(\tau^{n}\right) \nabla \log p_{\theta}\left(\tau^{n}\right) \\
|
||||
&=\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} R\left(\tau^{n}\right) \nabla \log p_{\theta}\left(a_{t}^{n} \mid s_{t}^{n}\right)
|
||||
\end{aligned}
|
||||
$$
|
||||
这边我们跳了一大步, $p_{\theta}(\tau)$ 是可以算的, $p_{\theta}(\tau)$ 里面有两项,一项是来自于 environment,一项是来自于你的 agent。来自 environment 那一项,你根本就不能算它,它做 gradient 是没有用的,因为它跟$\theta$ 没有任何关系,所以你不需要对它做 gradient。你真正会对它做 gradient 的, 只有 $\nabla \log p_{\theta}\left(a_{t}^{n} | s_{t}^{n}\right)$ 。
|
||||
|
||||
你可以非常直观的来理解这个部分 也就是在你 sample 到的 data 里面, 你 sample 到,在某一个 state $s_t$ 要执行某一个 action $a_t$, 这个 $s_t$ 跟 $a_t$ 它是在整个 trajectory $\tau$ 的里面的某一个 state and action 的 pair。 假设你在 $s_t$ 执行 $a_t$,最后发现 $\tau$ 的 reward 是正的, 那你就要增加这一项的概率,你就要增加在 $s_t$ 执行 $a_t$ 的概率。 反之,在 $s_t$ 执行 $a_t$ 会导致整个 trajectory 的 reward 变成负的, 你就要减少这一项的概率。
|
||||
|
||||
|
||||
|
||||

|
||||
这个怎么实现呢? 你用 gradient ascent 的方法 来 update 你的参数,你原来有一个参数 $\theta$ ,把你的 $\theta$ 加上你的 gradient 这一项,那当然前面要有个 learning rate,learning rate 其实也是要调的,你可用 Adam、RMSProp等方法对其进行调整。
|
||||
|
||||
我们可以套下面这个公式来把 gradient 计算出来:
|
||||
|
||||
$$
|
||||
\nabla \bar{R}_{\theta}=\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} R\left(\tau^{n}\right) \nabla \log p_{\theta}\left(a_{t}^{n} | s_{t}^{n}\right)
|
||||
$$
|
||||
实际上,要套上面这个公式, 首先你要先收集一大堆的 s 跟 a 的 pair,你还要知道这些 s 跟 a 在跟环境互动的时候,你会得到多少的 reward。 这些资料怎么收集呢?你要拿你的 agent,它的参数是 $\theta$,去跟环境做互动, 也就是拿你已经 train 好的 agent 先去跟环境玩一下,先去跟那个游戏互动一下, 互动完以后,你就会得到一大堆游戏的纪录,你会记录说,今天先玩了第一场,在第一场游戏里面,我们在 state $s_1$ 采取 action $a_1$,在 state $s_2$ 采取 action $a_2$ 。
|
||||
|
||||
其实玩游戏的时候,是有随机性的。所以 agent 本身是有随机性的,在同样 state $s_1$,不是每次都会采取 $a_1$,所以你要记录下来,在 state $s_1$ 采取 $a_1$,在 state $s_2$ 采取 $a_2$。整场游戏结束以后,得到的分数是$R(\tau^1)$。你会 sample 到另外一笔 data,也就是另外一场游戏,在另外一场游戏里面,你在第一个 state 采取这个 action,在第二个 state 采取这个 action,在第二个游戏画面采取这个 action,然后你 sample 到的就是$\tau^2$,你得到的 reward 是 $R(\tau^2)$。你就可以把 sample 到的东西代到这个 gradient 的式子里面,把 gradient 算出来。也就是把这边的每一个 s 跟 a 的 pair 拿进来,算一下它的 log probability 。你计算一下在某一个 state 采取某一个 action 的 log probability,然后对它取 gradient,然后这个 gradient 前面会乘一个 weight,weight 就是这场游戏的 reward。 有了这些以后,你就会去 update 你的 model。
|
||||
|
||||
|
||||
Update 完你的 model 以后。你要重新再去收集你的 data,再 update model。这边要注意一下,一般 policy gradient, sample 的 data 就只会用一次。你把这些 data sample 起来,然后拿去 update 参数,这些 data 就丢掉了,再重新 sample data,才能够再重新去 update 参数, 等一下我们会解决这个问题。
|
||||
|
||||
## 实现细节
|
||||

|
||||
|
||||
接下来讲一些实现的一些细节。实现方法是这个样子,把它想成你就是在做一个分类的问题,在 classification 里面就是 input 一个 image,然后 output 决定说是 10 个 class 里面的哪一个。在做 classification 时,我们要收集一堆 training data,要有 input 跟 output 的 pair。
|
||||
|
||||
在实现的时候,你就把 state 当作是 classifier 的 input。 你就当在做 image classification 的 problem,只是现在的 class 不是说 image 里面有什么 objects。 现在的 class 是说,看到这张 image 我们要采取什么样的行为,每一个行为就是一个 class。比如说第一个 class 叫做向左,第二个 class 叫做向右,第三个 class 叫做开火。
|
||||
|
||||
这些训练的数据从哪里来的呢? 做分类的问题时,要有 input 和正确的 output。 这些训练数据是从 sampling 的 process 来的。假设在 sampling 的 process 里面,在某一个 state,你 sample 到你要采取 action a, 你就把这个 action a 当作是你的 ground truth。你在这个 state,你 sample 到要向左。 本来向左这件事概率不一定是最高, 因为你是 sample,它不一定概率最高。假设你 sample 到向左,在 training 的时候 你叫告诉 machine 说,调整 network 的参数, 如果看到这个 state,你就向左。在一般的 classification 的 problem 里面,其实你在 implement classification 的时候, 你的 objective function 都会写成 minimize cross entropy,其实 minimize cross entropy 就是 maximize log likelihood。
|
||||
|
||||
|
||||

|
||||
|
||||
做 classification 的时候,objective function 就是 maximize 或 minimize 的对象, 因为我们现在是 maximize likelihood 所以其实是 maximize, 你要 maximize 的对象,如下式所示:
|
||||
$$
|
||||
\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}} \log p_{\theta}\left(a_{t}^{n} \mid s_{t}^{n}\right)
|
||||
$$
|
||||
|
||||
像这种 loss function。你可在 TensorFlow 里 call 现成的 function,它就会自动帮你算。
|
||||
然后你就可以把 gradient 计算出来,这是一般的分类问题。RL 唯一不同的地方是 loss 前面乘上一个 weight,这个是整场游戏的时候得到的 total reward R, 它并不是在 state s 采取 action a 的时候得到的 reward。 你要把你的每一笔 training data,都 weighted by 这个 R。然后你用 TensorFlow 或 pyTorch 去帮你算 gradient 就结束了,跟一般 classification 差不多。
|
||||
## Tips
|
||||
这边有一些在实现的时候,你也许用得上的 tip。
|
||||
### Tip 1: Add a Baseline
|
||||
|
||||

|
||||
|
||||
第一个 tip 是 add 一个 baseline。add baseline 是什么意思呢?如果 given state s 采取 action a 会给你整场游戏正面的 reward,就要增加它的概率。如果 state s 执行 action a,整场游戏得到负的 reward,就要减少这一项的概率。
|
||||
|
||||
但在很多游戏里面, reward 总是正的,就是说最低都是 0。比如说打乒乓球游戏, 你的分数就是介于 0~21 分之间,所以这个 R 总是正的。假设你直接套用这个式子, 在 training 的时候,告诉 model 说,不管是什么 action 你都应该要把它的概率提升。 在理想上,这么做并不一定会有问题。因为虽然说 R 总是正的,但它正的量总是有大有小,你在玩乒乓球那个游戏里面,得到的 reward 总是正的,但它是介于 0~21分之间,有时候你采取某些 action 可能是得到 0 分,采取某些 action 可能是得到 20 分。
|
||||

|
||||
|
||||
假设你有 3 个 action a/b/c 可以执行,在某一个 state 有 3 个 action a/b/c可以执行。根据这个式子,你要把这 3 项的概率, log probability 都拉高。 但是它们前面 weight 的这个 R 是不一样的。 R 是有大有小的,weight 小的,它上升的就少,weight 多的,它上升的就大一点。 因为这个 log probability,它是一个概率,所以action a、b、c 的和要是 0。 所以上升少的,在做完 normalize 以后, 它其实就是下降的,上升的多的,才会上升。
|
||||
|
||||
|
||||

|
||||
|
||||
|
||||
这个是一个理想上的状况,但是实际上,我们是在做 sampling 就本来这边应该是一个 expectation, summation over 所有可能的 s 跟 a 的 pair。 但你真正在学的时候,当然不可能是这么做的,你只是 sample 了少量的 s 跟 a 的 pair 而已。 因为我们做的是 sampling,有一些 action 可能从来都没有 sample 到。在某一个 state1,虽然可以执行的 action 有 a/b/c 3 个,但你可能只 sample 到 action b,你可能只 sample 到 action c,你没有 sample 到 action a。但现在所有 action 的 reward 都是正的,所以根据这个式子,它的每一项的概率都应该要上升。你会遇到的问题是,因为 a 没有被 sample 到,其它 action 的概率如果都要上升,a 的概率就下降。 所以 a 不一定是一个不好的 action, 它只是没被 sample 到。但只是因为它没被 sample 到, 它的概率就会下降,这个显然是有问题的,要怎么解决这个问题呢?你会希望你的 reward 不要总是正的。
|
||||
|
||||

|
||||
|
||||
为了解决 reward 总是正的这个问题,你可以把 reward 减掉一项叫做 b,这项 b 叫做 baseline。你减掉这项 b 以后,就可以让 $R(\tau^n)-b$ 这一项, 有正有负。 所以如果得到的 total reward $R(\tau^n)$ 大于 b 的话,就让它的概率上升。如果这个 total reward 小于 b,就算它是正的,正的很小也是不好的,你就要让这一项的概率下降。 如果$R(\tau^n)<b$ , 你就要让这个 state 采取这个 action 的分数下降 。这个 b 怎么设呢?一个最简单的做法就是, 你把 $\tau^n$ 的值取 expectation, 算一下 $\tau^n$的平均值。
|
||||
$$
|
||||
b \approx E[R(\tau)]
|
||||
$$
|
||||
|
||||
这是其中一种做法, 你可以想想看有没有其它的做法。
|
||||
|
||||
所以在 implement training 的时候,你会不断地把 $R(\tau)$ 的分数记录下来 然后你会不断地去计算 $R(\tau)$ 的平均值, 你会把这个平均值,当作你的 b 来用。 这样就可以让你在 training 的时候, $\nabla \log p_{\theta}\left(a_{t}^{n} | s_{t}^{n}\right)$ 乘上前面这一项, 是有正有负的,这个是第一个 tip。
|
||||
|
||||
|
||||
### Tip 2: Assign Suitable Credit
|
||||
|
||||
第二个 tip:给每一个 action 合适的 credit。什么意思呢,如果我们看今天下面这个式子的话,
|
||||
$$
|
||||
\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}}\left(R\left(\tau^{n}\right)-b\right) \nabla \log p_{\theta}\left(a_{t}^{n} \mid s_{t}^{n}\right)
|
||||
$$
|
||||
我们原来会做的事情是,在某一个 state,假设你执行了某一个 action a,它得到的 reward ,它前面乘上的这一项 $R(\tau^n)-b$。
|
||||
|
||||
只要在同一个 Episode 里面,在同一场游戏里面, 所有的 state 跟 a 的 pair,它都会 weighted by 同样的 reward term,这件事情显然是不公平的,因为在同一场游戏里面 也许有些 action 是好的,有些 action 是不好的。 假设整场游戏的结果是好的, 并不代表这个游戏里面每一个行为都是对的。若是整场游戏结果不好, 但不代表游戏里面的所有行为都是错的。所以我们希望可以给每一个不同的 action 前面都乘上不同的 weight。每一个 action 的不同 weight, 它反映了每一个 action 到底是好还是不好。
|
||||
|
||||

|
||||
|
||||
举个例子, 假设现在这个游戏都很短,只会有 3~4 个互动, 在 $s_a$ 这个 state 执行 $a_1$ ,得到 5 分。在 $s_b$ 这个 state 执行 $a_2$ ,得到 0 分。在 $s_c$这个 state 执行 $a_3$ ,得到 -2 分。 整场游戏下来,你得到 +3 分,那今天你得到 +3 分 代表在 state $s_b$ 执行 action $a_2$ 是好的吗?并不见得代表 state $s_b$ 执行 $a_2$ 是好的。因为这个正的分数,主要是来自于在state $s_a$ 执行了 $a_1$,跟在 state $s_b$ 执行 $a_2$ 是没有关系的,也许在 state $s_b$ 执行 $a_2$ 反而是不好的, 因为它导致你接下来会进入 state $s_c$,执行 $a_3$ 被扣分,所以今天整场游戏得到的结果是好的, 并不代表每一个行为都是对的。
|
||||
|
||||

|
||||
|
||||
如果按照我们刚才的讲法,整场游戏得到的分数是 3 分,那到时候在 training 的时候, 每一个 state 跟 action 的 pair,都会被乘上 +3。 在理想的状况下,这个问题,如果你 sample 够多就可以被解决。因为假设你 sample 够多,在 state $s_b$ 执行 $a_2$ 的这件事情,被 sample 到很多。就某一场游戏,在 state $s_b$ 执行 $a_2$,你会得到 +3 分。 但在另外一场游戏,在 state $s_b$ 执行 $a_2$,你却得到了 -7 分,为什么会得到 -7 分呢? 因为在 state $s_b$ 执行 $a_2$ 之前, 你在 state $s_a$ 执行 $a_2$ 得到 -5 分,-5 分这件事可能也不是在 $s_b$ 执行 $a_2$ 的错,这两件事情,可能是没有关系的,因为它先发生了,这件事才发生,所以它们是没有关系的。
|
||||
|
||||
在 state $s_b$ 执行 $a_2$ 可能造成的问题只有会在接下来 -2 分,而跟前面的 -5 分没有关系的。但是假设我们今天 sample 到这项的次数够多,把所有发生这件事情的情况的分数通通都集合起来, 那可能不是一个问题。但现在的问题就是,我们 sample 的次数是不够多的。在 sample 的次数不够多的情况下,你要给每一个 state 跟 action pair 合理的 credit,你要让大家知道它合理的 contribution。怎么给它一个合理的 contribution 呢? 一个做法是计算这个 pair 的 reward 的时候,不把整场游戏得到的 reward 全部加起来,**只计算从这一个 action 执行以后所得到的 reward**。因为这场游戏在执行这个 action 之前发生的事情是跟执行这个 action 是没有关系的, 所以在执行这个 action 之前得到多少 reward 都不能算是这个 action 的功劳。跟这个 action 有关的东西, 只有在执行这个 action 以后发生的所有的 reward 把它加起来,才是这个 action 真正的 contribution。所以在这个例子里面,在 state $s_b$ 执行 $a_2$ 这件事情,也许它真正会导致你得到的分数应该是 -2 分而不是 +3 分,因为前面的 +5 分 并不是执行 $a_2$ 的功劳。实际上执行 $a_2$ 以后,到游戏结束前, 你只有被扣 2 分而已,所以它应该是 -2。那一样的道理,今天执行 $a_2$ 实际上不应该是扣 7 分,因为前面扣 5 分,跟在 $s_b$ 这个 state 执行 $a_2$ 是没有关系的。在 $s_b$ 这个 state 执行 $a_2$,只会让你被扣两分而已,所以也许在 $s_b$ 这个 state 执行 $a_2$, 你真正会导致的结果只有扣两分而已。如果要把它写成式子的话是什么样子呢?如下式所示。
|
||||
|
||||

|
||||
|
||||
本来的 weight 是整场游戏的 reward 的总和。那现在改一下,改成从某个时间 $t$ 开始,假设这个 action 是在 t 这个时间点所执行的,从 $t$ 这个时间点,一直到游戏结束所有 reward 的总和,才真的代表这个 action 是好的还是不好的。
|
||||
|
||||

|
||||
接下来再更进一步,我们把未来的 reward 做一个 discount。为什么要把未来的 reward 做一个 discount 呢?因为虽然在某一个时间点,执行某一个 action,会影响接下来所有的结果。有可能在某一个时间点执行的 action,接下来得到的 reward 都是这个 action 的功劳。但在比较真实的情况下, 如果时间拖得越长,影响力就越小。 比如说在第二个时间点执行某一个 action, 那我在第三个时间点得到 reward 可能是在第二个时间点执行某个 action 的功劳,但是在 100 个 timestamp 之后,又得到 reward,那可能就不是在第二个时间点执行某一个 action 得到的功劳。 所以我们实际上在做的时候,你会在你的 R 前面 乘上一个 term 叫做 $\gamma$, $\gamma$ 它是小于 1 的,它会设个 0.9 或 0.99。 如果 time stamp $t'$ 越大,它前面就乘上越多次的 $\gamma$,就代表说现在在某一个 state $s_t$, 执行某一个 action $a_t$ 的时候,它真正的 credit 是在执行这个 action 之后 所有 reward 的总和,而且你还要乘上 $\gamma$。
|
||||
|
||||
举一个例子, 你就想成说,这是游戏的第 1、2、3、4 回合,那你在游戏的第二回合的某一个 $s_t$ 你执行 $a_t$,它真正的 credit 得到的分数应该是,假设你这边得到 +1 分 这边得到 +3 分,这边得到 -5 分,它的真正的 credit,应该是 1 加上一个 discount 的 credit 叫做 $\gamma$ 乘上 3,再加上 $\gamma^2$ 乘上 -5。
|
||||
|
||||
如果大家可以接受这样子的话, 实际上就是这么 implement 的。这个 b 可以是 state-dependent 的,事实上 b 它通常是一个 network estimate 出来的,它是一个 network 的 output。
|
||||
|
||||

|
||||
|
||||
把 $R-b$ 这一项合起来,我们统称为` advantage function`, 用 `A` 来代表 advantage function。Advantage function 是 dependent on s and a,我们就是要计算的是在某一个 state s 采取某一个 action a 的时候,advantage function 有多大。
|
||||
|
||||
这个 advantage function 它的上标是 $\theta$, $\theta$ 是什么意思呢? 因为在算 advantage function时,你要计算$\sum_{t^{\prime}=t}^{T_{n}} r_{t^{\prime}}^{n}$ ,你会需要有一个 interaction 的结果。你会需要有一个 model 去跟环境做 interaction,你才知道你接下来得到的 reward 会有多少。这个 $\theta$ 就是代表说是用 $\theta$ 这个 model 跟环境去做 interaction,然后你才计算出这一项。从时间 t 开始到游戏结束为止,所有 R 的 summation 把这一项减掉 b,然后这个就叫 advantage function。它的意义就是,假设我们在某一个 state $s_t$ 执行某一个 action $a_t$,相较于其他可能的 action,它有多好。它真正在意的不是一个绝对的好, 而是说在同样的 state 的时候 是采取某一个 action $a_t$ 相较于其它的 action 它有多好,它是相对的好。因为会减掉一个 b,减掉一个 baseline, 所以这个东西是相对的好,不是绝对的好。 $A^{\theta}\left(s_{t}, a_{t}\right)$ 通常可以是由一个 network estimate 出来的,这个 network 叫做 critic。
|
||||
BIN
docs/chapter1/img/1.1.png
Normal file
|
After Width: | Height: | Size: 362 KiB |
BIN
docs/chapter1/img/1.10.png
Normal file
|
After Width: | Height: | Size: 192 KiB |
BIN
docs/chapter1/img/1.11.png
Normal file
|
After Width: | Height: | Size: 150 KiB |
BIN
docs/chapter1/img/1.12.png
Normal file
|
After Width: | Height: | Size: 69 KiB |
BIN
docs/chapter1/img/1.13.png
Normal file
|
After Width: | Height: | Size: 180 KiB |
BIN
docs/chapter1/img/1.14.png
Normal file
|
After Width: | Height: | Size: 93 KiB |
BIN
docs/chapter1/img/1.15.png
Normal file
|
After Width: | Height: | Size: 83 KiB |
BIN
docs/chapter1/img/1.16.png
Normal file
|
After Width: | Height: | Size: 81 KiB |
BIN
docs/chapter1/img/1.17.png
Normal file
|
After Width: | Height: | Size: 82 KiB |
BIN
docs/chapter1/img/1.18.png
Normal file
|
After Width: | Height: | Size: 184 KiB |
BIN
docs/chapter1/img/1.19.png
Normal file
|
After Width: | Height: | Size: 143 KiB |
BIN
docs/chapter1/img/1.2.png
Normal file
|
After Width: | Height: | Size: 305 KiB |
BIN
docs/chapter1/img/1.3.png
Normal file
|
After Width: | Height: | Size: 492 KiB |
BIN
docs/chapter1/img/1.4.png
Normal file
|
After Width: | Height: | Size: 493 KiB |
BIN
docs/chapter1/img/1.5.png
Normal file
|
After Width: | Height: | Size: 176 KiB |
BIN
docs/chapter1/img/1.6.png
Normal file
|
After Width: | Height: | Size: 262 KiB |
BIN
docs/chapter1/img/1.7.png
Normal file
|
After Width: | Height: | Size: 229 KiB |
BIN
docs/chapter1/img/1.8.png
Normal file
|
After Width: | Height: | Size: 247 KiB |
BIN
docs/chapter1/img/1.9.png
Normal file
|
After Width: | Height: | Size: 268 KiB |
228
docs/chapter2/chapter2.md
Normal file
@@ -0,0 +1,228 @@
|
||||
[toc]
|
||||
# PPO
|
||||
## On-policy and Off-policy
|
||||
在讲 PPO 之前,我们先讲一下 on-policy and off-policy 这两种 training 方法的区别。
|
||||
在reinforcement learning 里面,我们要learn 的就是一个agent。
|
||||
|
||||
* 如果要 learn 的 agent 跟和环境互动的agent 是同一个的话, 这个叫做`on-policy`。
|
||||
* 如果要 learn 的 agent 跟和环境互动的agent 不是同一个的话, 那这个叫做`off-policy`。
|
||||
|
||||
比较拟人化的讲法就是如果今天要学习的那个agent,一边跟环境互动,一边做学习这个叫on-policy。 如果它在旁边看别人玩,通过看别人玩来学习的话,这个叫做off-policy。
|
||||
|
||||
为什么我们会想要考虑off-policy ?让我们来想想 policy gradient。Policy gradient 是 on-policy 的做法,因为在做policy gradient 时,我们会需要有一个agent、一个policy 和 一个actor。这个actor 先去跟环境互动去搜集资料,搜集很多的$\tau$,根据它搜集到的资料,会按照 policy gradient 的式子去 update policy 的参数。所以 policy gradient 是一个 on-policy 的 algorithm。
|
||||
|
||||

|
||||
|
||||
PPO是 policy gradient 的一个变形,它是现在 OpenAI default reinforcement learning 的 algorithm。
|
||||
|
||||
$$
|
||||
\nabla \bar{R}_{\theta}=E_{\tau \sim p_{\theta}(\tau)}\left[R(\tau) \nabla \log p_{\theta}(\tau)\right]
|
||||
$$
|
||||
|
||||
问题是上面这个update 的式子中的 $E_{\tau \sim p_{\theta}(\tau)}$ 应该是你现在的policy $\theta$ 所 sample 出来的 trajectory $\tau$ 做expectation。一旦 update 了参数,从$\theta$ 变成$\theta'$ ,$p_\theta(\tau)$这个概率就不对了。之前sample 出来的 data 就变的不能用了,所以 policy gradient 是一个会花很多时间来 sample data 的algorithm,你会发现大多数时间都在sample data,你的agent 去跟环境做互动以后,接下来就要update 参数。你只能update 参数一次,接下来你就要重新再去collect data, 然后才能再次update 参数,这显然是非常花时间的。所以我们想要从on-policy 变成off-policy。 这样做就可以用另外一个policy, 另外一个actor $\theta'$ 去跟环境做互动。用 $\theta'$ collect 到的data 去训练 $\theta$。假设我们可以用 $\theta'$ collect 到的data 去训练 $\theta$,意味着说我们可以把$\theta'$ collect 到的data 用非常多次。我们可以执行 gradient ascent 好几次,我们可以 update 参数好几次, 都只要用同一笔data 就好了。因为假设 $\theta$ 有能力学习另外一个actor $\theta'$ 所 sample 出来的 data 的话, 那$\theta'$ 就只要sample 一次,也许sample 多一点的data, 让$\theta$ 去update 很多次,这样就会比较有效率。
|
||||

|
||||
|
||||
具体怎么做呢?这边就需要介绍 important sampling 的概念。假设你有一个function $f(x)$,你要计算从 p 这个 distribution sample x,再把 x 带到 f 里面,得到$f(x)$。你要该怎么计算这个 $f(x)$ 的期望值?假设你不能对 p 这个distribution 做积分的话,那你可以从 p 这个 distribution 去 sample 一些data $x^i$。把 $x^i$ 代到 $f(x)$ 里面,然后取它的平均值,就可以近似 $f(x)$ 的期望值。
|
||||
|
||||
现在有另外一个问题,我们没有办法从 p 这个 distribution 里面 sample data。假设我们不能从 p sample data,只能从另外一个 distribution q 去 sample data,q 可以是任何 distribution。我们不能够从 p 去sample data,但可以从 q 去 sample $x$。我们从 q 去 sample $x^i$ 的话就不能直接套下面的式子。
|
||||
$$
|
||||
E_{x \sim p}[f(x)] \approx \frac{1}{N} \sum_{i=1}^N f(x^i)
|
||||
$$
|
||||
因为上式是假设你的 $x$ 都是从 p sample 出来的。所以做一个修正,修正是这样子的。期望值$E_{x \sim p}[f(x)]$其实就是$\int f(x) p(x) dx$,我们对其做如下的变换:
|
||||
$$
|
||||
\int f(x) p(x) d x=\int f(x) \frac{p(x)}{q(x)} q(x) d x=E_{x \sim q}[f(x){\frac{p(x)}{q(x)}}]
|
||||
$$
|
||||
我们就可以写成对 q 里面所 sample 出来的 x 取期望值。我们从q 里面 sample x,然后再去计算$f(x) \frac{p(x)}{q(x)}$,再去取期望值。所以就算我们不能从 p 里面去 sample data,只要能够从 q 里面去sample data,然后代入上式,你就可以计算从 p 这个distribution sample x 代入 f 以后所算出来的期望值。
|
||||
|
||||
这边是从 q 做sample,所以从 q 里 sample 出来的每一笔data,你需要乘上一个weight 来修正这两个 distribution 的差异,weight 就是$\frac{p(x)}{q(x)}$。$q(x)$是任何distribution 都可以,唯一的限制就是 $q(x)$ 的概率是0 的时候,$p(x)$ 的概率不为 0,不然这样会没有定义。假设 $q(x)$ 的概率是0 的时候,$p(x)$ 的概率也都是 0 的话,那这样 $p(x)$ 除以$q(x)$是有定义的。所以这个时候你就可以 apply important sampling 这个技巧。你就可以从 p 做sample 换成从 q 做sample。
|
||||
|
||||

|
||||
|
||||
Important sampling 有一些 issue。虽然理论上你可以把 p 换成任何的 q。但是在实现上, p 和 q 不能够差太多。差太多的话,会有一些问题。什么样的问题呢?
|
||||
|
||||
$$
|
||||
E_{x \sim p}[f(x)]=E_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]
|
||||
$$
|
||||
虽然上式成立。但上式左边是$f(x)$ 的期望值,它的distribution 是 p,上式右边是$f(x) \frac{p(x)}{q(x)}$ 的期望值,它的distribution 是 q。如果不是算期望值,而是算 variance 的话。这两个variance 是不一样的。两个 random variable 的 mean 一样,并不代表它的 variance 一样。
|
||||
|
||||
我们可以代一下方差的公式
|
||||
$$
|
||||
\operatorname{Var}_{x \sim p}[f(x)]=E_{x \sim p}\left[f(x)^{2}\right]-\left(E_{x \sim p}[f(x)]\right)^{2}
|
||||
$$
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\operatorname{Var}_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right] &=E_{x \sim q}\left[\left(f(x) \frac{p(x)}{q(x)}\right)^{2}\right]-\left(E_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]\right)^{2} \\
|
||||
&=E_{x \sim p}\left[f(x)^{2} \frac{p(x)}{q(x)}\right]-\left(E_{x \sim p}[f(x)]\right)^{2}
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
$\operatorname{Var}_{x \sim p}[f(x)]$ 和 $\operatorname{Var}_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$ 的差别在第一项是不同的, $\operatorname{Var}_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$ 的第一项多乘了$\frac{p(x)}{q(x)}$,如果$\frac{p(x)}{q(x)}$ 差距很大的话, $\operatorname{Var}_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$的 variance 就会很大。所以虽然理论上它们的expectation 一样,也就是说,你只要对 p 这个distribution sample 够多次,q 这个distribution sample 够多,你得到的结果会是一样的。但是假设你sample 的次数不够多,因为它们的variance 差距是很大的,所以你就有可能得到非常大的差别。
|
||||
|
||||

|
||||
|
||||
举个例子,当$p(x)$ 和 $q(x)$ 差距很大的时候,会发生什么样的问题。假设蓝线是 $p(x)$ 的distribution,绿线是 $q(x)$ 的distribution,红线是 $f(x)$。如果我们要计算$f(x)$的期望值,从 $p(x)$ 这个distribution 做 sample 的话,那显然 $E_{x \sim p}[f(x)]$ 是负的,因为左边那块区域 $p(x)$ 的概率很高,所以要sample 的话,都会sample 到这个地方,而$f(x)$ 在这个区域是负的, 所以理论上这一项算出来会是负。
|
||||
|
||||
接下来我们改成从 $q(x)$ 这边做sample,因为 $q(x)$ 在右边这边的概率比较高,所以如果你sample 的点不够的话,那你可能都只sample 到右侧。如果你都只sample 到右侧的话,你会发现说,算 $E_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$这一项,搞不好还应该是正的。你这边sample 到这些点,然后你去计算它们的$f(x) \frac{p(x)}{q(x)}$都是正的,所以你sample 到这些点都是正的。 你取期望值以后,也都是正的。为什么会这样,因为你sample 的次数不够多,因为假设你sample 次数很少,你只能sample 到右边这边。左边这边虽然概率很低,但也不是没有可能被sample 到。假设你今天好不容易sample 到左边的点,因为左边的点,$p(x)$ 和 $q(x)$ 是差很多的, 这边 $p(x)$ 很小,$q(x)$ 很大。今天 $f(x)$ 好不容易终于 sample 到一个负的,这个负的就会被乘上一个非常大的 weight ,这样就可以平衡掉刚才那边一直 sample 到 positive 的 value 的情况。最终你算出这一项的期望值,终究还是负的。但前提是你要sample 够多次,这件事情才会发生。但有可能sample 不够,$E_{x \sim p}[f(x)]$跟$E_{x \sim q}\left[f(x) \frac{p(x)}{q(x)}\right]$就有可能有很大的差距。这就是 importance sampling 的问题。
|
||||
|
||||

|
||||
|
||||
现在要做的事情就是把 importance sampling 用在 off-policy 的case。把 on-policy training 的algorithm 改成 off-policy training 的 algorithm。怎么改呢,之前我们是拿 $\theta$ 这个policy 去跟环境做互动,sample 出trajectory $\tau$,然后计算$R(\tau) \nabla \log p_{\theta}(\tau)$。
|
||||
|
||||
现在我们不用$\theta$ 去跟环境做互动,假设有另外一个 policy $\theta'$,它就是另外一个actor。它的工作是他要去做demonstration,$\theta'$ 的工作是要去示范给$\theta$ 看。它去跟环境做互动,告诉 $\theta$ 说,它跟环境做互动会发生什么事。然后,借此来训练$\theta$。我们要训练的是$\theta$ ,$\theta'$ 只是负责做 demo,负责跟环境做互动。
|
||||
|
||||
我们现在的$\tau$ 是从 $\theta'$ sample 出来的,是拿 $\theta'$ 去跟环境做互动。所以sample 出来的 $\tau$ 是从 $\theta'$ sample 出来的,这两个distribution 不一样。但没有关系,假设你本来是从 p 做sample,但你发现你不能够从 p 做sample,所以我们不拿$\theta$ 去跟环境做互动。你可以把 p 换 q,然后在后面这边补上一个 importance weight。现在的状况就是一样,把 $\theta$ 换成 $\theta'$ 后,要补上一个importance weight $\frac{p_{\theta}(\tau)}{p_{\theta^{\prime}}(\tau)}$。这个 importance weight 就是某一个 trajectory $\tau$ 用 $\theta$ 算出来的概率除以这个 trajectory $\tau$,用$\theta'$ 算出来的概率。这一项是很重要的,因为今天你要learn 的是actor $\theta$ 和 $\theta'$ 是不太一样的。$\theta'$ 会见到的情形跟 $\theta$ 见到的情形不见得是一样的,所以中间要做一个修正的项。
|
||||
|
||||
现在的data 不是从$\theta$ sample 出来,是从 $\theta'$ sample 出来的。从$\theta$ 换成$\theta'$ 有什么好处呢?因为现在跟环境做互动是$\theta'$ 而不是$\theta$。所以 sample 出来的东西跟 $\theta$ 本身是没有关系的。所以你就可以让 $\theta'$ 做互动 sample 一大堆的data,$\theta$ 可以update 参数很多次。然后一直到 $\theta$ train 到一定的程度,update 很多次以后,$\theta'$ 再重新去做sample,这就是on-policy 换成off-policy 的妙用。
|
||||
|
||||

|
||||
|
||||
实际在做policy gradient 的时候,我们并不是给整个 trajectory $\tau$ 都一样的分数,而是每一个state-action 的pair 会分开来计算。实际上update gradient 的时候,我们的式子是长这样子的。
|
||||
$$
|
||||
=E_{\left(s_{t}, a_{t}\right) \sim \pi_{\theta}}\left[A^{\theta}\left(s_{t}, a_{t}\right) \nabla \log p_{\theta}\left(a_{t}^{n} | s_{t}^{n}\right)\right]
|
||||
$$
|
||||
|
||||
我们用 $\theta$ 这个actor 去sample 出$s_t$ 跟$a_t$,sample 出state 跟action 的pair,我们会计算这个state 跟action pair 它的advantage, 就是它有多好。$A^{\theta}\left(s_{t}, a_{t}\right)$就是 accumulated 的 reward 减掉 bias,这一项就是估测出来的。它要估测的是,在state $s_t$ 采取action $a_t$ 是好的,还是不好的。那接下来后面会乘上$\nabla \log p_{\theta}\left(a_{t}^{n} | s_{t}^{n}\right)$,也就是说如果$A^{\theta}\left(s_{t}, a_{t}\right)$是正的,就要增加概率, 如果是负的,就要减少概率。
|
||||
|
||||
那现在用了 importance sampling 的技术把 on-policy 变成 off-policy,就从 $\theta$ 变成 $\theta'$。所以现在$s_t$、$a_t$ 是$\theta'$ ,另外一个actor 跟环境互动以后所sample 到的data。 但是拿来训练要调整参数是 model $\theta$。因为$\theta'$ 跟 $\theta$ 是不同的model,所以你要做一个修正的项。这项修正的项,就是用 importance sampling 的技术,把$s_t$、$a_t$ 用 $\theta$ sample 出来的概率除掉$s_t、$$a_t$ 用 $\theta'$ sample 出来的概率。
|
||||
|
||||
$$
|
||||
=E_{\left(s_{t}, a_{t}\right) \sim \pi_{\theta^{\prime}}}\left[\frac{P_{\theta}\left(s_{t}, a_{t}\right)}{P_{\theta^{\prime}}\left(s_{t}, a_{t}\right)} A^{\theta}\left(s_{t}, a_{t}\right) \nabla \log p_{\theta}\left(a_{t}^{n} | s_{t}^{n}\right)\right]
|
||||
$$
|
||||
|
||||
这边 A 有一个上标 $\theta$,$\theta$ 代表说这个是 actor $\theta$ 跟环境互动的时候所计算出来的 A。但是实际上从 $\theta$ 换到 $\theta'$ 的时候,$A^{\theta}(s_t,a_t)$ 应该改成 $A^{\theta'}(s_t,a_t)$,为什么?A 这一项是想要估测说现在在某一个 state 采取某一个 action,接下来会得到 accumulated reward 的值减掉base line 。你怎么估 A 这一项,你就会看在 state $s_t$,采取 action $a_t$,接下来会得到的reward 的总和,再减掉baseline。之前是 $\theta$ 在跟环境做互动,所以你观察到的是 $\theta$ 可以得到的reward。但现在是 $\theta'$ 在跟环境做互动,所以你得到的这个advantage, 其实是根据 $\theta'$ 所estimate 出来的advantage。但我们现在先不要管那么多, 我们就假设这两项可能是差不多的。
|
||||
|
||||
那接下来,我们可以拆解 $p_{\theta}\left(s_{t}, a_{t}\right)$ 和 $p_{\theta'}\left(s_{t}, a_{t}\right)$,即
|
||||
$$
|
||||
\begin{aligned}
|
||||
p_{\theta}\left(s_{t}, a_{t}\right)&=p_{\theta}\left(a_{t}|s_{t}\right) p_{\theta}(s_t) \\
|
||||
p_{\theta'}\left(s_{t}, a_{t}\right)&=p_{\theta'}\left(a_{t}|s_{t}\right) p_{\theta'}(s_t)
|
||||
\end{aligned}
|
||||
$$
|
||||
于是我们得到下式:
|
||||
$$
|
||||
=E_{\left(s_{t}, a_{t}\right) \sim \pi_{\theta^{\prime}}}\left[\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{\prime}}\left(a_{t} | s_{t}\right)} \frac{p_{\theta}\left(s_{t}\right)}{p_{\theta^{\prime}}\left(s_{t}\right)} A^{\theta^{\prime}}\left(s_{t}, a_{t}\right) \nabla \log p_{\theta}\left(a_{t}^{n} | s_{t}^{n}\right)\right]
|
||||
$$
|
||||
|
||||
|
||||
然后这边需要做一件事情是,假设 model 是 $\theta$ 的时候,你看到$s_t$ 的概率,跟 model 是$\theta'$ 的时候,你看到$s_t$ 的概率是差不多的,即$p_{\theta}(s_t)=p_{\theta'}(s_t)$。因为它们是一样的,所以你可以把它删掉,即
|
||||
$$
|
||||
=E_{\left(s_{t}, a_{t}\right) \sim \pi_{\theta^{\prime}}}\left[\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{\prime}}\left(a_{t} | s_{t}\right)} A^{\theta^{\prime}}\left(s_{t}, a_{t}\right) \nabla \log p_{\theta}\left(a_{t}^{n} | s_{t}^{n}\right)\right] \quad(1)
|
||||
$$
|
||||
|
||||
为什么可以假设它是差不多的。举例来说,会看到什么state 往往跟你会采取什么样的action 是没有太大的关系的。比如说你玩不同的 Atari 的游戏,其实你看到的游戏画面都是差不多的,所以也许不同的 $\theta$ 对 $s_t$ 是没有影响的。但是有一个更直觉的理由就是这一项到时候真的要你算,你会算吗?因为想想看这项要怎么算,这一项你还要说我有一个参数$\theta$,然后拿$\theta$ 去跟环境做互动,算$s_t$ 出现的概率,这个你根本很难算。尤其是你如果 input 是image 的话, 同样的 $s_t$ 根本就不会出现第二次。你根本没有办法估这一项, 所以干脆就无视这个问题。
|
||||
|
||||
但是 $p_{\theta}(a_t|s_t)$很好算。你手上有$\theta$ 这个参数,它就是个network。你就把$s_t$ 带进去,$s_t$ 就是游戏画面,你把游戏画面带进去,它就会告诉你某一个state 的 $a_t$ 概率是多少。我们其实有个 policy 的network,把 $s_t$ 带进去,它会告诉我们每一个 $a_t$ 的概率是多少。所以
|
||||
$\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{\prime}}\left(a_{t} | s_{t}\right)}$ 这一项,你只要知道$\theta$ 和 $\theta'$ 的参数就可以算。
|
||||
|
||||
现在我们得到一个新的objective function。
|
||||
|
||||
$$
|
||||
J^{\theta^{\prime}}(\theta)=E_{\left(s_{t}, a_{t}\right) \sim \pi_{\theta^{\prime}}}\left[\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{\prime}}\left(a_{t} | s_{t}\right)} A^{\theta^{\prime}}\left(s_{t}, a_{t}\right)\right]
|
||||
$$
|
||||
|
||||
|
||||
式(1)是 gradient,其实我们可以从 gradient 去反推原来的 objective function。这边有一个公式
|
||||
|
||||
$$
|
||||
\nabla f(x)=f(x) \nabla \log f(x)
|
||||
$$
|
||||
|
||||
我们可以用这个公式来反推objective function,要注意一点,对 $\theta$ 求梯度时,$p_{\theta^{\prime}}(a_{t} | s_{t})$ 和 $A^{\theta^{\prime}}\left(s_{t}, a_{t}\right)$ 都是常数。
|
||||
|
||||
|
||||
所以实际上,当我们apply importance sampling 的时候,要去optimize 的那一个objective function 就长这样子,我们把它写作$J^{\theta^{\prime}}(\theta)$。为什么写成$J^{\theta^{\prime}}(\theta)$ 呢,这个括号里面那个$\theta$ 代表我们要去optimize 的那个参数。$\theta'$ 是说我们拿 $\theta'$ 去做demonstration,就是现在真正在跟环境互动的是$\theta'$。因为 $\theta$ 不跟环境做互动,是 $\theta'$ 在跟环境互动。
|
||||
|
||||
然后你用$\theta'$ 去跟环境做互动,sample 出$s_t$、$a_t$ 以后,你要去计算$s_t$ 跟$a_t$ 的advantage,然后你再去把它乘上$\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{\prime}}\left(a_{t} | s_{t}\right)}$。$\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{\prime}}\left(a_{t} | s_{t}\right)}$是好算的,$A^{\theta^{\prime}}\left(s_{t}, a_{t}\right)$ 可以从这个 sample 的结果里面去估测出来的,所以 $J^{\theta^{\prime}}(\theta)$ 是可以算的。实际上在 update 参数的时候,就是按照式(1) 来 update 参数。
|
||||
|
||||
|
||||
|
||||
## PPO
|
||||
|
||||

|
||||
|
||||
我们可以把 on-policy 换成off-policy,但 importance sampling 有一个 issue,如果 $p_{\theta}\left(a_{t} | s_{t}\right)$ 跟$p_{\theta'}\left(a_{t} | s_{t}\right)$ 差太多的话,这两个distribution 差太多的话,importance sampling 的结果就会不好。怎么避免它差太多呢?这个就是PPO 在做的事情。它实际上做的事情就是这样,在 off-policy 的方法里要optimize 的是 $J^{\theta^{\prime}}(\theta)$。但是这个objective function 又牵涉到 importance sampling。在做importance sampling 的时候,$p_{\theta}\left(a_{t} | s_{t}\right)$ 不能跟 $p_{\theta'}\left(a_{t} | s_{t}\right)$差太多。你做 demonstration 的model 不能够跟真正的model 差太多,差太多的话 importance sampling 的结果就会不好。我们在 training 的时候,多加一个constrain。这个constrain 是 $\theta$ 跟 $\theta'$ output 的 action 的 KL divergence,简单来说,这一项的意思就是要衡量说 $\theta$ 跟 $\theta'$ 有多像。
|
||||
|
||||
然后我们希望在 training 的过程中,learn 出来的 $\theta$ 跟 $\theta'$ 越像越好。因为如果 $\theta$ 跟 $\theta'$ 不像的话,最后的结果就会不好。所以在 PPO 里面有两个式子,一方面是 optimize 本来要 optimize 的东西,但再加一个 constrain。这个 constrain 就好像那个 regularization 的 term 一样,在做 machine learning 的时候不是有 L1/L2 的regularization。这一项也很像 regularization,这样 regularization 做的事情就是希望最后 learn 出来的 $\theta$ 不要跟 $\theta'$ 太不一样。
|
||||
|
||||
PPO 有一个前身叫做TRPO,TRPO 的式子如下式所示。
|
||||
$$
|
||||
\begin{aligned}
|
||||
J_{T R P O}^{\theta^{\prime}}(\theta)=E_{\left(s_{t}, a_{t}\right) \sim \pi_{\theta^{\prime}}}\left[\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{\prime}}\left(a_{t} | s_{t}\right)} A^{\theta^{\prime}}\left(s_{t}, a_{t}\right)\right] \\ \\
|
||||
\mathrm{KL}\left(\theta, \theta^{\prime}\right)<\delta
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
它与PPO不一样的地方 是 constrain 摆的位置不一样,PPO是直接把 constrain 放到你要 optimize 的那个式子里面,然后你就可以用 gradient ascent 的方法去 maximize 这个式子。但 TRPO 是把 KL divergence 当作constrain,它希望 $\theta$ 跟 $\theta'$ 的 KL divergence 小于一个$\delta$。如果你是用 gradient based optimization 时,有 constrain 是很难处理的。
|
||||
|
||||
PPO是很难处理的,因为它是把 KL divergence constrain 当做一个额外的constrain,没有放objective 里面,所以它很难算。所以不想搬石头砸自己的脚的话, 你就用PPO 不要用TRPO。看文献上的结果是,PPO 跟TRPO 可能 performance 差不多,但 PPO 在实现上比 TRPO 容易的多。
|
||||
|
||||
KL divergence 到底指的是什么?这边我是直接把 KL divergence 当做一个 function,input 是 $\theta$ 跟 $\theta'$,但我的意思并不是说把 $\theta$ 或 $\theta'$ 当做一个distribution,算这两个distribution 之间的距离,我不是这个意思。所谓的 $\theta$ 跟 $\theta'$ 的距离并不是参数上的距离,而是 behavior 上的距离。
|
||||
|
||||
假设你有一个model,有一个actor 它是$\theta$,你有另外一个actor 的参数是$\theta'$ ,所谓参数上的距离就是你算这两组参数有多像。我今天所讲的不是参数上的距离, 而是它们行为上的距离。就是你先带进去一个state s,它会对这个 action 的 space output 一个 distribution。假设你有 3 个actions,3 个可能的 actions 就 output 3 个值。那今天所指的 distance 是behavior distance。也就是说,给同样的 state 的时候,输出 action 之间的差距。这两个 actions 的 distribution 都是一个概率分布。所以就可以计算这两个概率分布的 KL divergence。把不同的 state output 的这两个 distribution 的KL divergence 平均起来才是我这边所指的两个 actor 间的 KL divergence。你可能说怎么不直接算这个 $\theta$ 或 $\theta'$ 之间的距离,甚至不要用KL divergence 算,L1 跟 L2 的 norm 也可以保证 $\theta$ 跟 $\theta'$ 很接近啊。在做reinforcement learning 的时候,之所以我们考虑的不是参数上的距离,而是 action 上的距离,是因为很有可能对 actor 来说,参数的变化跟 action 的变化不一定是完全一致的。有时候你参数小小变了一下,它可能 output 的行为就差很多。或是参数变很多,但 output 的行为可能没什么改变。**所以我们真正在意的是这个actor 它的行为上的差距,而不是它们参数上的差距。**所以在做PPO 的时候,所谓的 KL divergence 并不是参数的距离,而是action 的距离。
|
||||
|
||||

|
||||
|
||||
我们来看一下PPO1 的algorithm。它先initial 一个policy 的参数$\theta^0$。然后在每一个iteration 里面呢,你要用参数$\theta^k$,$\theta^k$ 就是你在前一个training 的iteration得到的actor 的参数,你用$\theta^k$ 去跟环境做互动,sample 到一大堆 state-action 的pair。
|
||||
|
||||
然后你根据$\theta^k$ 互动的结果,估测一下$A^{\theta^{k}}\left(s_{t}, a_{t}\right)$。然后你就 apply PPO 的 optimization 的 formulation。但跟原来的policy gradient 不一样,原来的 policy gradient 只能 update 一次参数,update 完以后,你就要重新 sample data。但是现在不用,你拿 $\theta^k$ 去跟环境做互动,sample 到这组 data 以后,你可以让 $\theta$ update 很多次,想办法去 maximize objective function。这边 $\theta$ update 很多次没有关系,因为我们已经有做 importance sampling,所以这些experience,这些 state-action 的 pair 是从 $\theta^k$ sample 出来的没有关系。$\theta$ 可以 update 很多次,它跟 $\theta^k$ 变得不太一样也没有关系,你还是可以照样训练 $\theta$。
|
||||
|
||||

|
||||
|
||||
在PPO 的paper 里面还有一个 `adaptive 的KL divergence`,这边会遇到一个问题就是 $\beta$ 要设多少,它就跟那个regularization 一样。regularization 前面也要乘一个weight,所以这个 KL divergence 前面也要乘一个 weight,但 $\beta$ 要设多少呢?所以有个动态调整 $\beta$ 的方法。在这个方法里面呢,你先设一个 KL divergence,你可以接受的最大值。然后假设你发现说你 optimize 完这个式子以后,KL divergence 的项太大,那就代表说后面这个 penalize 的 term 没有发挥作用,那就把 $\beta$ 调大。那另外你定一个 KL divergence 的最小值。如果发现 optimize 完上面这个式子以后,KL divergence 比最小值还要小,那代表后面这一项的效果太强了,你怕他只弄后面这一项,那$\theta$ 跟$\theta^k$ 都一样,这不是你要的,所以你这个时候你叫要减少 $\beta$。所以 $\beta$ 是可以动态调整的。这个叫做 adaptive 的 KL penalty。
|
||||
|
||||

|
||||
|
||||
如果你觉得算 KL divergence 很复杂。有一个PPO2。PPO2 要去 maximize 的 objective function 如下式所示,它的式子里面就没有 KL divergence 。
|
||||
$$
|
||||
\begin{aligned}
|
||||
J_{P P O 2}^{\theta^{k}}(\theta) \approx \sum_{\left(s_{t}, a_{t}\right)} \min &\left(\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{k}}\left(a_{t} | s_{t}\right)} A^{\theta^{k}}\left(s_{t}, a_{t}\right),\right.\\
|
||||
&\left.\operatorname{clip}\left(\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{k}}\left(a_{t} | s_{t}\right)}, 1-\varepsilon, 1+\varepsilon\right) A^{\theta^{k}}\left(s_{t}, a_{t}\right)\right)
|
||||
\end{aligned}
|
||||
$$
|
||||
这个式子看起来有点复杂,但实际 implement 就很简单。我们来实际看一下说这个式子到底是什么意思。
|
||||
min 这个 operator 做的事情是第一项跟第二项里面选比较小的那个。第二项前面有个clip function,clip 这个function 的意思是说,在括号里面有3 项,如果第一项小于第二项的话,那就output $1-\varepsilon$ 。第一项如果大于第三项的话,那就output $1+\varepsilon$。 $\varepsilon$ 是一个 hyper parameter,你要tune 的,你可以设成 0.1 或 设 0.2 。
|
||||
假设这边设0.2 的话,如下式所示
|
||||
$$
|
||||
\operatorname{clip}\left(\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{k}}\left(a_{t} | s_{t}\right)}, 0.8, 1.2\right)
|
||||
$$
|
||||
|
||||
如果$\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{k}}\left(a_{t} | s_{t}\right)}$算出来小于0.8,那就当作0.8。如果算出来大于1.2,那就当作1.2。
|
||||
|
||||
我们先看一下下面这项这个算出来到底是什么的东西。
|
||||
$$
|
||||
\operatorname{clip}\left(\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{k}}\left(a_{t} | s_{t}\right)}, 1-\varepsilon, 1+\varepsilon\right)
|
||||
$$
|
||||
|
||||

|
||||
|
||||
上图的横轴是 $\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{k}}\left(a_{t} | s_{t}\right)}$,纵轴是 clip function 实际的输出。
|
||||
|
||||
* 如果 $\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{k}}\left(a_{t} | s_{t}\right)}$ 大于$1+\varepsilon$,输出就是$1+\varepsilon$。
|
||||
* 如果小于 $1-\varepsilon$, 它输出就是 $1-\varepsilon$。
|
||||
* 如果介于 $1+\varepsilon$ 跟 $1-\varepsilon$ 之间, 就是输入等于输出。
|
||||
|
||||

|
||||
|
||||
$\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{k}}\left(a_{t} | s_{t}\right)}$ 是绿色的线,$\operatorname{clip}\left(\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{k}}\left(a_{t} | s_{t}\right)}, 1-\varepsilon, 1+\varepsilon\right)$ 是蓝色的线。在绿色的线跟蓝色的线中间,我们要取一个最小的。假设前面乘上的这个 term A,它是大于0 的话,取最小的结果,就是红色的这一条线。
|
||||
|
||||

|
||||
|
||||
如果 A 小于0 的话,取最小的以后,就得到红色的这一条线。
|
||||
这一个式子虽然看起来有点复杂,implement 起来是蛮简单的,因为这个式子想要做的事情就是希望 $p_{\theta}(a_{t} | s_{t})$ 跟$p_{\theta^k}(a_{t} | s_{t})$,也就是你拿来做 demonstration 的那个model, 跟你实际上 learn 的 model,在optimize 以后不要差距太大。那你要怎么让它做到不要差距太大呢?
|
||||
|
||||
如果 A 大于 0,也就是某一个 state-action 的pair 是好的。那我们希望增加这个state-action pair 的概率。也就是说,我们想要让 $p_{\theta}(a_{t} | s_{t})$ 越大越好,但它跟 $p_{\theta^k}(a_{t} | s_{t})$ 的比值不可以超过 $1+\varepsilon$。如果超过$1+\varepsilon$ 的话,就没有benefit 了。红色的线就是我们的objective function,我们希望objective 越大越好,我们希望 $p_{\theta}(a_{t} | s_{t})$ 越大越好。但是$\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{k}}\left(a_{t} | s_{t}\right)}$只要大过 $1+\varepsilon$,就没有benefit 了。
|
||||
|
||||
所以今天在train 的时候,当$p_{\theta}(a_{t} | s_{t})$ 被 train 到$\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{k}}\left(a_{t} | s_{t}\right)}$大于 $1+\varepsilon$ 时,它就会停止。
|
||||
|
||||
假设 $p_{\theta}(a_{t} | s_{t})$ 比 $p_{\theta^k}(a_{t} | s_{t})$ 还要小,那我们的目标是要让 $p_{\theta}(a_{t} | s_{t})$ 越大越好。
|
||||
|
||||
* 假设这个 advantage 是正的,我们希望$p_{\theta}(a_{t} | s_{t})$ 越大越好。假设这个 action 是好的,我们当然希望这个 action 被采取的概率越大越好。所以假设 $p_{\theta}(a_{t} | s_{t})$ 还比 $p_{\theta^k}(a_{t} | s_{t})$ 小,那就尽量把它挪大,但只要大到$1+\varepsilon$ 就好。
|
||||
* 负的时候也是一样,如果某一个state-action pair 是不好的,我们希望把 $p_{\theta}(a_{t} | s_{t})$ 减小。如果 $p_{\theta}(a_{t} | s_{t})$ 比$p_{\theta^k}(a_{t} | s_{t})$ 还大,那你就尽量把它压小,压到$\frac{p_{\theta}\left(a_{t} | s_{t}\right)}{p_{\theta^{k}}\left(a_{t} | s_{t}\right)}$是$1-\epsilon$ 的时候就停了,就不要再压得更小。
|
||||
|
||||
这样的好处就是, 你不会让 $p_{\theta}(a_{t} | s_{t})$ 跟 $p_{\theta^k}(a_{t} | s_{t})$ 差距太大。要implement 这个东西,很简单。
|
||||
|
||||
|
||||

|
||||
上图是 PPO 跟其它方法的比较。Actor-Critic 和 A2C+Trust Region 方法是actor-critic based 的方法。PPO 是紫色线的方法,这边每张图就是某一个RL 的任务,你会发现说在多数的cases 里面,PPO 都是不错的,不是最好的,就是第二好的。
|
||||
|
||||
BIN
docs/chapter2/img/2.1.png
Normal file
|
After Width: | Height: | Size: 188 KiB |
BIN
docs/chapter2/img/2.10.png
Normal file
|
After Width: | Height: | Size: 113 KiB |
BIN
docs/chapter2/img/2.11.png
Normal file
|
After Width: | Height: | Size: 70 KiB |
BIN
docs/chapter2/img/2.12.png
Normal file
|
After Width: | Height: | Size: 197 KiB |
BIN
docs/chapter2/img/2.13.png
Normal file
|
After Width: | Height: | Size: 114 KiB |
BIN
docs/chapter2/img/2.14.png
Normal file
|
After Width: | Height: | Size: 645 KiB |
BIN
docs/chapter2/img/2.2.png
Normal file
|
After Width: | Height: | Size: 241 KiB |
BIN
docs/chapter2/img/2.3.png
Normal file
|
After Width: | Height: | Size: 227 KiB |
BIN
docs/chapter2/img/2.4.png
Normal file
|
After Width: | Height: | Size: 268 KiB |
BIN
docs/chapter2/img/2.5.png
Normal file
|
After Width: | Height: | Size: 208 KiB |
BIN
docs/chapter2/img/2.6.png
Normal file
|
After Width: | Height: | Size: 283 KiB |
BIN
docs/chapter2/img/2.7.png
Normal file
|
After Width: | Height: | Size: 222 KiB |
BIN
docs/chapter2/img/2.8.png
Normal file
|
After Width: | Height: | Size: 195 KiB |
BIN
docs/chapter2/img/2.9.png
Normal file
|
After Width: | Height: | Size: 451 KiB |
265
docs/chapter3/chapter3.md
Normal file
@@ -0,0 +1,265 @@
|
||||
[toc]
|
||||
|
||||
# Q-learning
|
||||
|
||||
## Q-learning
|
||||
|
||||

|
||||
|
||||
Q-learning 是value-based 的方法。在value based 的方法里面,我们 learn 的并不是 policy。我们要 learn 的是一个 critic,critic 并不直接采取行为,它想要做的事情是评价现在的行为有多好或者是有多不好。Critic 并不直接采取行为是说,假设有一个 actor $\pi$ ,那 critic 的工作就是来评价这个 actor $\pi$ 做得有多好或者有多不好。举例来说,有一种 actor 叫做 state value 的 function。state value function 的意思就是说,假设 actor 叫做 $\pi$,拿 $\pi$ 跟环境去做互动。假设 $\pi$ 看到了某一个state s。如果在玩Atari 游戏的话,state s 是某一个画面,看到某一个画面,某一个state s 的时候,接下来一直玩到游戏结束,累积的reward 的期望值有多大。所以 $V^{\pi}$ 是一个function,这个 function 吃一个state,当作input,然后它会 output 一个 scalar, 这个 scalar 代表说,$\pi$ 这个actor 看到state s 的时候,接下来预期到游戏结束的时候,它可以得到多大的value。
|
||||
|
||||
|
||||
|
||||
举个例子,假设你是玩space invader 的话,也许这个 state s,这一个游戏画面,你的 $V^{\pi}(s)$ 会很大,因为接下来还有很多的怪可以杀, 所以你会得到很大的分数。一直到游戏结束的时候,你仍然有很多的分数可以吃。右边那个case,也许你得到的$V^{\pi}(s)$就很小,因为剩下的怪也不多了,并且红色的防护罩已经消失了,所以可能很快就会死掉。所以接下来得到预期的 reward,就不会太大。这边需要强调的一个点是说,当你在讲这一个critic 的时候,critic 都是绑一个 actor 的,就 critic 并没有办法去凭空去 evaluate 一个 state 的好坏,它所 evaluate 的东西是在 given 某一个 state 的时候, 假设我接下来互动的actor 是$\pi$,那我会得到多少reward,因为就算是给同样的 state,你接下来的 $\pi$ 不一样,你得到的 reward 也是不一样的。举例来说,在左边那个case,虽然假设是一个正常的$\pi$,它可以杀很多怪,那假设他是一个很弱的$\pi$,它就站在原地不动,然后马上就被射死了,那你得到的 V 还是很小。所以 critic output 值有多大,其实是取决于两件事:state 和 actor。所以你的 critic 其实都要绑一个 actor,它是在衡量某一个actor 的好坏,而不是 generally 衡量一个 state 的好坏。这边要强调一下,critic output 是跟 actor 有关的,state value 其实是 depend on 你的 actor。当你的actor 变的时候,state value function 的output 其实也是会跟着改变的。
|
||||
再来问题就是,怎么衡量这一个state value function 呢?怎么衡量这一个$V^{\pi}(s)$ 呢?有两种不同的做法。
|
||||
|
||||

|
||||
|
||||
怎么estimate 这些critic,那怎么estimate $V^{\pi}(s)$ 呢。有两个方向,一个是用` Monte-Carlo(MC) based` 的方法。MC based 的方法就是让 actor 去跟环境做互动,你要看 actor 好不好, 你就让actor 去跟环境做互动,给critic 看。然后,critic 就统计说, 这个actor 如果看到 state $s_a$,接下来 accumulated reward 会有多大。如果它看到 state $s_b$,接下来accumulated reward会有多大。但是实际上,你当然不可能把所有的state 通通都扫过。如果你是玩Atari 游戏的话,你的state 是image ,你没有办法把所有的state 通通扫过。所以实际上我们的 $V^{\pi}(s)$ 是一个network。对一个network 来说,就算是 input state 是从来都没有看过的,它也可以想办法估测一个value 的值。怎么训练这个network 呢?因为如果在state $s_a$,接下来的 accumulated reward 就是 $G_a$。也就是说,对这个 value function 来说,如果input 是state $s_a$,正确的output 应该是$G_a$。如果input state $s_b$,正确的output 应该是value $G_b$。所以在training 的时候, 它就是一个regression 的 problem。Network 的 output 就是一个 value,你希望在 input $s_a$ 的时候,output value 跟$G_a$ 越近越好,input $s_b$ 的时候,output value 跟 $G_b$ 越近越好。接下来把network train 下去,就结束了。这是第一个方法,这是MC based 的方法。
|
||||
|
||||

|
||||
|
||||
第二个方法是`Temporal-difference` 的方法, `即TD based `的方法。在 MC based 的方法中,每次我们都要算accumulated reward,也就是从某一个 state $s_a$ 一直玩游戏玩到游戏结束的时候,你会得到的所有reward 的总和。所以今天你要 apply MC based 的approach,你必须至少把这个游戏玩到结束。但有些游戏非常的长,你要玩到游戏结束才能够 update network,你可能根本收集不到太多的资料,花的时间太长了。所以怎么办?有另外一种 TD based 的方法。TD based 的方法不需要把游戏玩到底。只要在游戏的某一个情况,某一个 state $s_t$ 的时候,采取 action $a_t$ ,得到 reward $r_t$ ,跳到 state $s_{t+1}$,就可以apply TD 的方法。
|
||||
|
||||
怎么 apply TD 的方法呢?这边是基于以下这个式子:
|
||||
$$
|
||||
V^{\pi}\left(s_{t}\right)=V^{\pi}\left(s_{t+1}\right)+r_{t}
|
||||
$$
|
||||
|
||||
假设我们现在用的是某一个 policy $\pi$,在 state $s_t$,它会采取 action $a_t$,给我们 reward $r_t$ ,接下来进入$s_{t+1}$ 。state $s_{t+1}$ 的 value 跟 state $s_t$ 的 value,它们的中间差了一项 $r_t$。因为你把 $s_{t+1}$ 得到的 value 加上得到的 reward $r_t$ 就会等于$s_t$ 得到的value。有了这个式子以后,你在training 的时候,你要做的事情并不是直接去估测 V,而是希望你得到的结果 V 可以满足这个式子,也就是说你 training 的时候会是这样 train 的,你把 $s_t$ 丢到network 里面,因为 $s_t$ 丢到network 里面会得到 $V^{\pi}(s_t)$,把 $s_{t+1}$ 丢到你的 value network 里面会得到$V^{\pi}(s_{t+1})$,这个式子告诉我们,$V^{\pi}(s_t)$ 减$V^{\pi}(s_{t+1})$,它应该值是$r_t$。然后希望它们两个相减的 loss 跟 $r_t$ 越接近,train 下去,update V 的参数,你就可以把 V function learn 出来。
|
||||
|
||||

|
||||
|
||||
MC 跟TD 有什么样的差别呢?MC 最大的问题就是 variance 很大。因为我们在玩游戏的时候,它本身是有随机性的。所以你可以把 $G_a$ 看成一个 random 的 variable。因为你每次同样走到 $s_a$ 的时候,最后你得到的 $G_a$ 其实是不一样的。你看到同样的state $s_a$,最后玩到游戏结束的时候,因为游戏本身是有随机性的,你的玩游戏的model 本身搞不好也有随机性,所以你每次得到的 $G_a$ 是不一样的,每一次得到$G_a$ 的差别其实会很大。为什么它会很大呢?因为 $G_a$ 其实是很多个不同的 step 的reward 的和。假设你每一个step 都会得到一个reward,$G_a$ 是从 state $s_a$ 开始,一直玩到游戏结束,每一个timestamp reward 的和。
|
||||
|
||||
那举例来说,我在右上角就列一个式子是说,
|
||||
|
||||
$$
|
||||
\operatorname{Var}[k X]=k^{2} \operatorname{Var}[X]
|
||||
$$
|
||||
Var就是指variance。
|
||||
通过这个式子,我们可以知道 $G_a$ 的 variance 相较于某一个 state 的 reward,它会是比较大的,$G_a$ 的variance 是比较大的。
|
||||
|
||||
现在,如果说用TD 的话呢?用TD 的话,你是要去minimize 这样的一个式子:
|
||||
|
||||

|
||||
|
||||
在这中间会有随机性的是 r。因为计算你在 $s_t$ 采取同一个 action,你得到的 reward 也不见得是一样的,所以 r 其实也是一个 random variable。但这个 random variable 的 variance 会比 $G_a$ 还要小,因为 $G_a$ 是很多 r 合起来。这边只是某一个 r 而已。$G_a$ 的variance 会比较大,r 的variance 会比较小。但是这边你会遇到的一个问题是你这个 V 不见得估的准,假设你的这个 V 估的是不准的,那你 apply 这个式子 learn 出来的结果,其实也会是不准的。所以MC 跟TD各有优劣。今天其实TD 的方法是比较常见的,MC 的方法其实是比较少用的。
|
||||
|
||||

|
||||
上图是讲 TD 跟 MC 的差异。假设有某一个critic,它去观察某一个 policy $\pi$ 跟环境互动的8个 episode 的结果。有一个actor $\pi$ 跟环境互动了8 次,得到了8 次玩游戏的结果。接下来这个 critic 去估测 state 的 value。如果我们看 $s_b$ 的value 是多少,$s_b$ 这个state 在8场游戏里面都有经历过,然后在这8 场游戏里面,其中有6 场得到 reward 1,有两场得到reward 0,所以如果你是要算期望值的话,就看到 state $s_b$ 以后得到的 reward,一直到游戏结束的时候得到的accumulated reward 期望值是3/4。但 $s_a$ 期望的reward 到底应该是多少呢?这边其实有两个可能的答案:一个是0,一个是3/4。为什么有两个可能的答案呢?这取决于你用MC 还是TD。用MC 跟用TD 算出来的结果是不一样的。
|
||||
|
||||
假如你用MC 的话,你会发现这个$s_a$ 就出现一次,看到$s_a$ 这个state,接下来 accumulated reward 就是 0。所以今天 $s_a$ expected reward 就是 0。但 TD 在计算的时候,它是要update 下面这个式子。
|
||||
$$
|
||||
V^{\pi}\left(s_{a}\right)=V^{\pi}\left(s_{b}\right)+r
|
||||
$$
|
||||
|
||||
因为我们在 state $s_a$ 得到 reward r=0 以后,跳到 state $s_b$。所以 state $s_b$ 的 reward 会等于 state $s_b$ 的 reward 加上在state $s_a$ 跳到 state $s_b$ 的时候可能得到的 reward r。而这个可能得到的reward r 的值是 0。$s_b$ expected reward 是3/4。那$s_a$ 的reward 应该是3/4。有趣的地方是用 MC 跟 TD 你估出来的结果,其实很有可能是不一样的。就算 critic observed 到一样的 training data,它最后估出来的结果,也不见得会是一样。那为什么会这样呢?你可能问说,那一个比较对呢?其实就都对。
|
||||
|
||||
因为在第一个 trajectory, $s_a$ 得到 reward 0 以后,再跳到 $s_b$ 也得到reward 0。这边有两个可能,一个可能是$s_a$,它就是一个带 sign 的state,所以只要看到 $s_a$ 以后,$s_b$ 就会拿不到reward,有可能$s_a$ 其实影响了$s_b$。如果是用MC 的算法的话,它就会考虑这件事, 它会把 $s_a$ 影响 $s_b$ 这件事考虑进去。所以看到 $s_a$ 以后,接下来 $s_b$ 就得不到 reward,所以看到$s_a$ 以后,期望的reward 是 0。但是今天看到$s_a$ 以后, $s_b$ 的 reward 是0 这件事有可能只是一个巧合,就并不是 $s_a$ 所造成,而是因为说 $s_b$ 有时候就是会得到reward 0,这只是单纯运气的问题。其实平常 $s_b$ 会得到reward 期望值是3/4。跟$s_a$ 是完全没有关系的。所以 $s_a$ 假设之后会跳到 $s_b$,那其实得到的reward 按照TD 来算应该是3/4。所以不同的方法,它考虑了不同的假设,运算结果不同。
|
||||

|
||||
|
||||
还有另外一种critic,这种critic 叫做 `Q-function`。它又叫做`state-action value function`。
|
||||
|
||||
刚才的 state function,它的 input 是一个 state,它是根据 state 去计算出,看到这个state 以后的 expected accumulated reward 是多少。这个 state-action value function 的 input 不是 state,它是一个 state 跟 action 的 pair,它的意思是说,在某一个 state 采取某一个action,假设我们都使用 actor $\pi$ ,得到的 accumulated reward 的期望值有多大。
|
||||
Q-function 有一个需要注意的问题是,这个 actor $\pi$,在看到 state s 的时候,它采取的 action 不一定是 a。Q-function 的假设是说,假设在 state s 强制采取 action a。不管你现在考虑的这个actor $\pi$, 它会不会采取action a,这不重要。在state s 强制采取 action a。接下来都用 actor $\pi$ 继续玩下去,就只有在 state s,我们才强制一定要采取action a,接下来就进入自动模式,让actor $\pi$ 继续玩下去,得到的 expected reward 才是$Q^{\pi}(s,a)$。
|
||||
|
||||
Q-function 有两种写法:
|
||||
|
||||
* input 是 state 跟action,output 就是一个scalar;
|
||||
* input 是一个 state s,会output 好几个value。
|
||||
|
||||
假设 action 是 discrete 的,action 就只有3 个可能,往左往右或是开火。那这个 Q-function output 的3 个 values 就分别代表 a 是向左的时候的 Q value,a 是向右的时候的Q value,还有 a 是开火的时候的 Q value。
|
||||
|
||||
那你要注意的事情是,上图右边的 function 只有discrete action 才能够使用。如果 action 是无法穷举的,你只能够用上图左边这个式子,不能够用右边这个式子。
|
||||
|
||||

|
||||
|
||||
上图是文献上的结果,你去 estimate Q-function 的话,看到的结果可能会像是这个样子。这是什么意思呢?它说假设我们有3 个 actions,3 个actions 就是原地不动、向上、向下。
|
||||
|
||||
* 假设是在第一个state,不管是采取哪个action,最后到游戏结束的时候,得到的 expected reward 其实都差不多。因为球在这个地方,就算是你向下,接下来你其实应该还来的急救,所以今天不管是采取哪一个action,就差不了太多。
|
||||
|
||||
* 假设在第二个state,这个乒乓球它已经反弹到很接近边缘的地方,这个时候你采取向上,你才能得到positive 的reward,才接的到球。如果你是站在原地不动或向下的话,接下来你都会miss 掉这个球。你得到的reward 就会是负的。
|
||||
|
||||
* 假设在第三个state,球很近了,所以就要向上。
|
||||
|
||||
* 假设在第四个state,球被反弹回去,这时候采取那个action就都没有差了。
|
||||
|
||||
这个是 state-action value 的一个例子。
|
||||
|
||||

|
||||
|
||||
虽然表面上我们 learn 一个Q-function,它只能拿来评估某一个actor $\pi$ 的好坏,但只要有了这个 Q-function,我们就可以做 reinforcement learning。有这个Q-function,我们就可以决定要采取哪一个action。它的大原则是这样,假设你有一个初始的actor,也许一开始很烂, 随机的也没有关系,初始的actor 叫做 $\pi$,这个$\pi$ 跟环境互动,会collect data。接下来你learn 一个 $\pi$ 这个actor 的Q value,你去衡量一下 $\pi$ 这个actor 在某一个state 强制采取某一个action,接下来用$\pi$ 这个policy 会得到的expected reward,那用TD 或 MC 也是可以的。你learn 出一个Q-function 以后,就保证你可以找到一个新的policy $\pi'$ 。这一个policy $\pi'$ 一定会比原来的policy $\pi$ 还要好。那等一下会定义说,什么叫做好。所以这边神奇的地方是,假设你只要有一个Q-function,你有某一个policy $\pi$,你根据那个policy $\pi$ learn 出 policy $\pi$ 的Q-function,接下来保证你可以找到一个新的policy $\pi'$ ,它一定会比$\pi$ 还要好,然后你把原来的$\pi$ 用$\pi'$ 取代掉,再去找它的Q,得到新的以后,再去找一个更好的policy。 然后这个循环一直下去,你的policy 就会越来越好。
|
||||
|
||||

|
||||
上图就是讲我们刚才讲的到底是什么。
|
||||
|
||||
* 首先要定义的是什么叫做比较好?我们说$\pi'$ 一定会比$\pi$ 还要好,什么叫做好呢?这边所谓好的意思是说,对所有可能的state s 而言,对同一个state s 而言,$\pi$ 的 value function 一定会小于$\pi'$ 的value function。也就是说我们走到同一个 state s 的时候,如果拿 $\pi$ 继续跟环境互动下去,我们得到的 reward 一定会小于用$\pi'$ 跟环境互动下去得到的reward。所以不管在哪一个state,你用$\pi'$ 去做interaction,得到的expected reward 一定会比较大。所以 $\pi'$ 是比 $\pi$ 还要好的一个policy。
|
||||
|
||||
* 有了这个 Q 以后,怎么找这个$\pi'$ 呢?事实上这个$\pi'$ 是什么?这个$\pi'$ 就是, 如果你根据以下的这个式子去决定你的action,
|
||||
|
||||
$$
|
||||
\pi^{\prime}(s)=\arg \max _{a} Q^{\pi}(s, a)
|
||||
$$
|
||||
|
||||
根据上式去决定你的action 的步骤叫做 $\pi'$ 的话,那这个 $\pi'$ 一定会比$\pi$ 还要好。这个意思是说,假设你已经learn 出 $\pi$ 的Q-function,今天在某一个state s,你把所有可能的action a 都一一带入这个Q-function,看看说那一个 a 可以让 Q-function 的value 最大。那这一个action,就是$\pi'$ 会采取的action。这边要注意一下,今天given 这个state s,你的policy $\pi$ 并不一定会采取action a。今天是 given 某一个state s 强制采取 action a,用$\pi$ 继续互动下去得到的expected reward,才是这个Q-function 的定义。所以在state s 里面不一定会采取action a。假设用这一个 $\pi'$ 在state s 采取action a 跟 $\pi$ 所谓采取action 是不一定会一样的。然后 $\pi'$ 所采取的action 会让他得到比较大的reward。
|
||||
|
||||
* 所以根本就没有一个policy 叫做 $\pi'$,这个$\pi'$ 其实就是用 Q-function 推出来的。所以没有另外一个 network 决定 $\pi'$ 怎么interaction,有Q 就可以找出$\pi'$。
|
||||
* 但是这边有另外一个问题就是,在这边要解一个 arg max 的 problem。所以a 如果是continuous 的就会有问题,如果是discrete 的,a 只有3 个选项,一个一个带进去, 看谁的Q 最大,没有问题。但如果是 continuous 要解 arg max problem,你就会有问题,但这个是之后才会解决的。
|
||||
|
||||

|
||||
|
||||
上图想要跟大家讲的是说,为什么用 $Q^{\pi}(s,a)$ 这个Q-function 所决定出来的$\pi'$,一定会比 $\pi$ 还要好。
|
||||
|
||||
假设现在呢,我们有一个policy 叫做 $\pi'$,它是由 $Q^{\pi}$ 决定的。我们要证对所有的 state s 而言,$V^{\pi^{\prime}}(s) \geq V^{\pi}(s)$。怎么证呢?我们先把$V^{\pi^{\prime}}(s)$写出来:
|
||||
$$
|
||||
V^{\pi}(s)=Q^{\pi}(s, \pi(s))
|
||||
$$
|
||||
假设在 state s 这个地方,你 follow $\pi$ 这个actor,它会采取的action,也就是$\pi(s)$,那你算出来的$Q^{\pi}(s, \pi(s))$ 会等于$V^{\pi}(s)$。In general 而言,$Q^{\pi}(s, \pi(s))$ 不见得等于$V^{\pi}(s)$ ,因为 action 不见得是$\pi(s)$。但如果这个 action 是 $\pi(s)$ 的话,$Q^{\pi}(s, \pi(s))$ 是等于$V^{\pi}(s)$的。
|
||||
|
||||
|
||||
$Q^{\pi}(s, \pi(s))$ 还满足如下的关系:
|
||||
$$
|
||||
Q^{\pi}(s, \pi(s)) \le \max _{a} Q^{\pi}(s, a)
|
||||
$$
|
||||
|
||||
因为这边是所有action 里面可以让 Q 最大的那个action,所以今天这一项一定会比它大。那我们知道说这一项是什么,这一项就是$Q^{\pi}(s, a)$,$a$ 就是 $\pi'(s)$。因为$\pi'(s)$ output 的 a, 就是可以让$Q^\pi(s,a)$ 最大的那一个。所以我们得到了下面的式子:
|
||||
$$
|
||||
\max _{a} Q^{\pi}(s, a)=Q^{\pi}\left(s, \pi^{\prime}(s)\right)
|
||||
$$
|
||||
|
||||
于是:
|
||||
$$
|
||||
V^{\pi}(s) \leq Q^{\pi}\left(s, \pi^{\prime}(s)\right)
|
||||
$$
|
||||
也就是说某一个state,如果你按照policy $\pi$,一直做下去,你得到的reward 一定会小于等于,在这个state s。你故意不按照 $\pi$ 所给你指示的方向,而是按照 $\pi'$ 的方向走一步,但之后只有第一步是按照 $\pi'$ 的方向走,只有在state s 这个地方,你才按照 $\pi'$ 的指示走,但接下来你就按照 $\pi$ 的指示走。虽然只有一步之差, 但是我从上面这个式子知道说,只有一步之差,你得到的 reward 一定会比完全 follow $\pi$ 得到的 reward 还要大。
|
||||
|
||||
那接下来你想要证的东西就是:
|
||||
$$
|
||||
Q^{\pi}\left(s, \pi^{\prime}(s) \right) \le V^{\pi'}(s)
|
||||
$$
|
||||
|
||||
也就是说,只有一步之差,你会得到比较大的reward。但假设每步都是不一样的, 每步都是 follow $\pi'$ 而不是$\pi$ 的话,那你得到的reward 一定会更大。如果你要用数学式把它写出来的话,你可以这样写
|
||||
|
||||
$Q^{\pi}\left(s, \pi^{\prime}(s)\right)$这个式子,它的意思就是说,我们在state $s_t$ 采取 action $a_t$,得到 reward $r_{t+1}$,然后跳到state $s_{t+1}$,即如下式所示:
|
||||
$$
|
||||
Q^{\pi}\left(s, \pi^{\prime}(s)\right)=E\left[r_{t+1}+V^{\pi}\left(s_{t+1}\right) \mid s_{t}=s, a_{t}=\pi^{\prime}\left(s_{t}\right)\right]
|
||||
$$
|
||||
这边有一个地方写得不太好,这边应该写成$r_t$ 跟之前的notation 比较一致,但这边写成了$r_{t+1}$,其实这都是可以的。在文献上有时候有人会说 在state $s_t$ 采取action $a_t$ 得到reward $r_{t+1}$, 有人会写成$r_t$,但意思其实都是一样的。在state s,按照$\pi'$ 采取某一个action $a_t$ ,得到reward $r_{t+1}$,然后跳到state $s_{t+1}$,$V^{\pi}\left(s_{t+1}\right)$是state $s_{t+1}$,根据$\pi$ 这个actor 所估出来的value。这边要取一个期望值,因为在同样的state 采取同样的action,你得到的reward,还有会跳到的 state 不一定是一样, 所以这边需要取一个期望值。
|
||||
|
||||
接下来我们会得到如下的式子:
|
||||
$$
|
||||
\begin{array}{l}
|
||||
E\left[r_{t+1}+V^{\pi}\left(s_{t+1}\right) | s_{t}=s, a_{t}=\pi^{\prime}\left(s_{t}\right)\right] \\
|
||||
\leq E\left[r_{t+1}+Q^{\pi}\left(s_{t+1}, \pi^{\prime}\left(s_{t+1}\right)\right) | s_{t}=s, a_{t}=\pi^{\prime}\left(s_{t}\right)\right]
|
||||
\end{array}
|
||||
$$
|
||||
上式为什么成立呢?因为
|
||||
$$
|
||||
V^{\pi}(s) \leq Q^{\pi}\left(s, \pi^{\prime}(s)\right)
|
||||
$$
|
||||
也就是
|
||||
$$
|
||||
V^{\pi}(s_{t+1}) \leq Q^{\pi}\left(s_{t+1}, \pi^{\prime}(s_{t+1})\right)
|
||||
$$
|
||||
|
||||
也就是说,现在你一直follow $\pi$,跟某一步follow $\pi'$,接下来都follow $\pi$ 比起来,某一步follow $\pi'$ 得到的reward 是比较大的。
|
||||
|
||||
接着我们得到下式:
|
||||
$$
|
||||
\begin{array}{l}
|
||||
E\left[r_{t+1}+Q^{\pi}\left(s_{t+1}, \pi^{\prime}\left(s_{t+1}\right)\right) | s_{t}=s, a_{t}=\pi^{\prime}\left(s_{t}\right)\right] \\
|
||||
=E\left[r_{t+1}+r_{t+2}+V^{\pi}\left(s_{t+2}\right) | \ldots\right]
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
因为
|
||||
$$
|
||||
Q^{\pi}\left(s_{t+1}, \pi^{\prime}\left(s_{t+1}\right)\right) = r_{t+2}+V^{\pi}\left(s_{t+2}\right)
|
||||
$$
|
||||
|
||||
然后你再代入
|
||||
|
||||
$$
|
||||
V^{\pi}(s) \leq Q^{\pi}\left(s, \pi^{\prime}(s)\right)
|
||||
$$
|
||||
|
||||
一直算到底,算到episode 结束。那你就知道说
|
||||
$$
|
||||
V^{\pi}(s)\le V^{\pi'}(s)
|
||||
$$
|
||||
|
||||
这边告诉我们的事情如下,你可以estimate 某一个policy 的Q-function,接下来你就一定可以找到另外一个policy 叫做$\pi'$,它一定比原来的policy 还要更好。
|
||||
|
||||
## Target Network
|
||||
|
||||

|
||||
|
||||
接下来讲一下在Q-learning 里你一定会用到的tip。第一个是 `target network`,什么意思呢?我们在learn Q-function 的时候,也会用到 TD 的概念。那怎么用 TD?你现在收集到一个data, 是说在state $s_t$,你采取action $a_t$ 以后,你得到reward $r_t$ ,然后跳到state $s_{t+1}$。然后根据这个Q-function,你会知道说
|
||||
$$
|
||||
\mathrm{Q}^{\pi}\left(s_{t}, a_{t}\right)
|
||||
=r_{t}+\mathrm{Q}^{\pi}\left(s_{t+1}, \pi\left(s_{t+1}\right)\right)
|
||||
$$
|
||||
|
||||
所以你在learn 的时候,你会说我们有Q-function,input $s_t$, $a_t$ 得到的value,跟input $s_{t+1}$, $\pi (s_{t+1})$ 得到的value 中间,我们希望它差了一个$r_t$, 这跟刚才讲的TD 的概念是一样的。但是实际上在learn 的时候,你会发现这样的一个function 并不好 learn。因为假设你说这是一个regression 的problem,$\mathrm{Q}^{\pi}\left(s_{t}, a_{t}\right) $是你network 的output,$r_{t}+\mathrm{Q}^{\pi}\left(s_{t+1}, \pi\left(s_{t+1}\right)\right)$是你的target,你会发现 target 是会动的。当然你要implement 这样的training,其实也没有问题。就是你在做 back propagation 的时候, $Q^{\pi}$ 的参数会被 update,你会把两个update 的结果加在一起。它们是同一个model $Q^{\pi}$, 所以两个update 的结果会加在一起。但是实际上在做的时候,你的training 会变得不太稳定,因为假设你把 $\mathrm{Q}^{\pi}\left(s_{t}, a_{t}\right) $ 当作你model 的output, $r_{t}+\mathrm{Q}^{\pi}\left(s_{t+1}, \pi\left(s_{t+1}\right)\right)$ 当作target 的话。你要去 fit 的 target 是一直在变的,这种一直在变的target 的training 是不太好train 的。所以实际上你会把其中一个 Q,通常是你就选择下面这个 Q,把它固定住。也就是说你在training 的时候,你并不 update 这个Q 的参数,你只update 左边这个Q 的参数,而右边这个Q 的参数,它会被固定住,我们叫它 `target network`。它负责产生target,所以叫做target network。因为target network 是固定的,所以你现在得到的target,也就是 $r_{t}+\mathrm{Q}^{\pi}\left(s_{t+1}, \pi\left(s_{t+1}\right)\right)$ 的值也是固定的。
|
||||
|
||||
因为 target network 是固定的,我们只调左边network 的参数,它就变成是一个regression 的problem。我们希望 model 的output,它的值跟你的目标越接近越好,你会minimize 它的 mean square error。你会 minimize 它们 L2 的distance。这个东西就是regression。在实现上,你会把这个Q update 好几次以后,再去用 update 过的 Q 替换这个 target network 。但它们两个不要一起动,它们两个一起动的话, 你的结果会很容易坏掉。一开始这两个network 是一样的,然后接下来在train 的时候,你会把右边的 network fix 住。你在做 gradient decent 的时候,只调左边这个network 的参数,那你可能update 100 次以后才把这个参数,复制到右边的 network 去,把它盖过去。把它盖过去以后,你这个target 的value 就变了。就好像说你今天本来在做一个regression 的problem,那你train后把这个regression problem 的loss 压下去以后,接下来你把这边的参数把它copy 过去以后,你的target 就变掉了。 那你接下来就要重新再train。
|
||||
|
||||
## Exploration
|
||||
|
||||

|
||||
|
||||
第二个 tip 是`Exploration`。当我们使用 Q-function 的时候,policy 完全depend on Q-function。说given 某一个state,你就穷举所有的 a, 看哪个 a 可以让 Q value 最大,它就是采取的action。那其实这个跟 policy gradient 不一样,在做 policy gradient 的时候,output 其实是 stochastic 的。我们 output 一个action 的distribution,根据这个action 的distribution 去做sample, 所以在policy gradient 里面,你每次采取的action 是不一样的,是有随机性的。那像这种Q-function, 如果你采取的action 总是固定的,会有什么问题呢?你会遇到的问题就是这不是一个好的收集 data 的方式。因为假设我们今天真的要估某一个state,你可以采取action $a_{1}$, $a_{2}$, $a_{3}$。你要估测在某一个state 采取某一个action 会得到的Q value,你一定要在那一个 state 采取过那一个action,才估得出它的value。如果你没有在那个state 采取过那个action,你其实估不出那个value 的。当然如果是用deep 的network,就你的Q-function 其实是一个network,这种情形可能会没有那么严重。但是 in general 而言,假设 Q-function 是一个table,没有看过的 state-action pair,它就是估不出值来。Network 也是会有一样的问题就是, 只是没有那么严重。所以今天假设你在某一个state,action $a_{1}$, $a_{2}$, $a_{3}$ 你都没有采取过,那你估出来的 $Q(s,a_{1})$, $Q(s,a_{2})$, $Q(s,a_{3})$ 的 value 可能都是一样的,就都是一个初始值,比如说 0,即
|
||||
$$
|
||||
\begin{array}{l}
|
||||
Q(s, a_1)=0 \\
|
||||
Q(s, a_2)=0 \\
|
||||
Q(s, a_3)=0
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
但是假设你在state s,你sample 过某一个action $a_{2}$ ,它得到的值是positive 的reward。那 $Q(s, a_2)$ 就会比其他的action 都要好。在采取action 的时候, 就看说谁的Q value 最大就采取谁,所以之后你永远都只会sample 到$a_{2}$,其他的action 就再也不会被做了,所以就会有问题。就好像说你进去一个餐厅吃饭,其实你都很难选。你今天点了某一个东西以后,假说点了某一样东西, 比如说椒麻鸡,你觉得还可以。接下来你每次去就都会点椒麻鸡,再也不会点别的东西了,那你就不知道说别的东西是不是会比椒麻鸡好吃,这个是一样的问题。
|
||||
|
||||
如果你没有好的 exploration 的话, 你在training 的时候就会遇到这种问题。举一个实际的例子, 假设你今天是用 Q-learning 来玩比如说`slither.io`。在玩`slither.io` 你会有一个蛇,然后它在环境里面就走来走去, 然后就吃到星星,它就加分。假设这个游戏一开始,它采取往上走,然后就吃到那个星星,它就得到分数,它就知道说往上走是positive。接下来它就再也不会采取往上走以外的action 了,所以接下来就会变成每次游戏一开始,它就往上冲,然后就死掉,再也做不了别的事。所以今天需要有exploration 的机制,需要让 machine 知道说,虽然根据之前sample 的结果,$a_2$ 好像是不错的,但你至少偶尔也试一下$a_{1}$ 跟$a_{3}$,搞不好他们更好也说不定。
|
||||
|
||||
有两个方法解这个问题,一个是`Epsilon Greedy`。Epsilon Greedy 的意思是说,我们有$1-\varepsilon$ 的机率,通常$\varepsilon$ 就设一个很小的值, $1-\varepsilon$ 可能是90%,也就是90% 的机率,完全按照Q-function 来决定action。但是你有10% 的机率是随机的。通常在实现上 $\varepsilon$ 会随着时间递减。也就是在最开始的时候。因为还不知道那个action 是比较好的,所以你会花比较大的力气在做 exploration。接下来随着training 的次数越来越多。已经比较确定说哪一个Q 是比较好的。你就会减少你的exploration,你会把 $\varepsilon$ 的值变小,主要根据Q-function 来决定你的action,比较少做random,这是Epsilon Greedy。
|
||||
|
||||
还有一个方法叫做 `Boltzmann Exploration`,这个方法就比较像是policy gradient。在policy gradient 里面我们说network 的output 是一个 expected action space 上面的一个的 probability distribution。再根据 probability distribution 去做sample。那其实你也可以根据 Q value 去定一个probability distribution,你可以说,假设某一个action 的Q value 越大,代表它越好,那我们采取这个action 的机率就越高。但是某一个action 的Q value 小,不代表我们不能try,try 看它好不好用。所以我们有时候也要try,try 那些 Q value 比较差的 action,怎么做呢?因为Q value 是有正有负的。所以你要把它弄成一个概率,你可能就先取exponential,然后再做normalize。然后把 $exp(Q(s,a))$ 做normalize 的这个概率当作是你在决定action 的时候sample 的概率。在实现上,Q 是一个network,所以你有点难知道, 在一开始的时候network 的output 到底会长怎么样子。但是你可以猜测说, 假设你一开始没有任何的training data,你的参数是随机的,那given 某一个state s,不同的a output 的值,可能就是差不多的。所以一开始$Q(s,a)$ 应该会倾向于是uniform。也就是在一开始的时候,你这个probability distribution 算出来,它可能是比较uniform 的。
|
||||
|
||||
## Replay Buffer
|
||||
|
||||

|
||||
|
||||
第三个tip是`replay buffer`。replay buffer 是说现在会有某一个policy $\pi$ 去跟环境做互动,然后它会去收集data。我们会把所有的data 放到一个buffer 里面,buffer 里面就存了很多data。Buffer 比如说 5 万,这样它里面可以存 5 万笔资料,每一笔资料就是记得说,我们之前在某一个state $s_t$,采取某一个action $a_t$,得到了 reward $r_t$。然后跳到 state $s_{t+1}$。那你用 $\pi$ 去跟环境互动很多次,把收集到的资料都放到这个 replay buffer 里面。这边要注意的事情是replay buffer 里面的 experience可能是来自于不同的policy,你每次拿 $\pi$ 去跟环境互动的时候,你可能只互动10000 次,然后接下来你就更新你的$\pi$ 了。但是这个buffer 里面可以放5 万笔资料,所以 5 万笔资料可能是来自于不同的 policy。Buffer 只有在它装满的时候,才会把旧的资料丢掉。所以这个buffer 里面它其实装了很多不同的 policy 的experiences。
|
||||
|
||||

|
||||
|
||||
有了这个buffer 以后,你做的事情就是怎么train 这个Q 的model 呢,怎么估Q 的function?你的做法是这样:你会iterative 去train 这个Q-function,在每一个iteration 里面,你从这个buffer 里面,随机挑一个batch 出来,就跟一般的network training 一样,你从那个training data set 里面,去挑一个batch 出来。你去sample 一个batch 出来,里面有一把的experiences,根据这把experiences 去update 你的Q-function。就跟我们刚才讲那个 TD learning 要有一个target network 是一样的。你去sample 一堆batch,sample 一个batch 的data,sample 一堆 experiences,然后再去update 你的Q-function。
|
||||
|
||||
当我们这么做的时候, 它变成了一个off-policy 的做法。因为本来我们的 Q 是要观察 $\pi$ 这个action 的value,但实际上存在你的 replay buffer 里面的这些experiences 不是通通来自于$\pi$,有些是过去其他的$\pi$ 所遗留下来的experience。因为你不会拿某一个$\pi$ 就把整个buffer 装满,然后拿去测 Q-function,这个$\pi$ 只是sample 一些data塞到那个buffer 里面去,然后接下来就让 Q 去train。所以Q 在sample 的时候, 它会sample 到过去的一些资料。
|
||||
|
||||
但是这样做有什么好处呢?这么做有两个好处。
|
||||
|
||||
* 第一个好处,其实在做reinforcement learning 的时候, 往往最花时间的step 是在跟环境做互动,train network 反而是比较快的。因为你用GPU train 其实很快, 真正花时间的往往是在跟环境做互动。用replay buffer 可以减少跟环境做互动的次数,因为在做training 的时候,你的experience 不需要通通来自于某一个policy。一些过去的policy 所得到的experience 可以放在 buffer 里面被使用很多次,被反复的再利用,这样让你的sample 到experience 的利用是比较efficient。
|
||||
|
||||
* 第二个好处,在train network 的时候,其实我们希望一个batch 里面的data 越diverse 越好。如果你的batch 里面的data 都是同样性质的,你train 下去,其实是容易坏掉的。如果你batch 里面都是一样的data,你train 的时候,performance 会比较差。我们希望batch data 越diverse 越好。那如果你今天,你的这个buffer 里面的那些experience 通通来自于不同的policy ,那你sample 到的一个batch 里面的data 会是比较diverse 。
|
||||
|
||||
Q:我们明明是要观察 $\pi$ 的value, 我们要量的是 $\pi$ 的value ,里面混杂了一些不是$\pi$ 的experience 到底有没有关系?
|
||||
|
||||
A:没关系。这并不是因为过去的 $\pi$ 跟现在的 $\pi$ 很像, 就算过去的$\pi$ 没有很像,其实也是没有关系的。主要的原因是因为, 我们并不是去sample 一个trajectory,我们只sample 了一笔experience,所以跟是不是 off-policy 这件事是没有关系的。就算是off-policy,就算是这些 experience 不是来自于 $\pi$,我们其实还是可以拿这些 experience 来估测 $Q^{\pi}(s,a)$。这件事有点难解释,不过你就记得说 replay buffer 这招在理论上也是没有问题的。
|
||||
|
||||
## Typical Q-learing Algorithm
|
||||
|
||||

|
||||
|
||||
|
||||
上图就是一般的 Q-learning 的算法。
|
||||
|
||||
这个算法是这样,我们需要一个target network, 先开始initialize 的时候,你initialize 2 个network,一个是 Q,一个是$\hat{Q}$,其实 $\hat{Q}$ 就等于 Q。一开始这个 target Q-network,跟你原来的 Q network 是一样的。在每一个episode,就你拿你的 agent,你拿你的 actor 去跟环境做互动,那在每一次互动的过程中,你都会得到一个state $s_t$,一个游戏的画面,那你会采取某一个action $a_t$,那怎么知道采取哪一个action $a_t$ 呢?你就根据你现在的 Q-function。但是记得你要有exploration 的机制。比如说你用 Boltzmann exploration 或是 Epsilon Greedy 的 exploration。那接下来你得到reward $r_t$,然后跳到state $s_{t+1}$。所以现在collect 到一笔data,这笔data 是 $s_t$, $a_t$ ,$r_t$, $s_{t+1}$。结果这笔 data 就塞到你的buffer 里面去。如果buffer 满的话, 你就再把一些旧有的资料丢掉。那接下来你就从你的buffer 里面去sample data,那你sample 到的是$s_{i}, a_{i}, r_{i}, s_{i+1}$。这笔data 跟你刚放进去的,不一定是同一笔。你把这笔data 塞到buffer 里面,再到buffer 里面去抽data,抽出来并不是同一笔,你可能抽到一个旧的。
|
||||
|
||||
|
||||
那这边另外要注意的是,其实你sample 出来不是一笔data,你 sample 出来的是一个batch 的data,你sample 一个batch 出来,sample 一把experiences 出来,接下来你要做的事情就是计算你的target。假设你 sample 出这么一笔data。根据这笔data 去算你的target。你的target 是什么呢?target 记得要用target network,也就是$\hat{Q}$ 来算。我们用$\hat{Q}$ 来代表target network。Target 就是:
|
||||
$$
|
||||
y=r_{i}+\max _{a} \hat{Q}\left(s_{i+1}, a\right)
|
||||
$$
|
||||
其中 a 就是看现在哪一个 a 可以让$\hat{Q}$ 的值最大,你就选那一个a。因为我们在 state $s_{i+1}$会采取的action a,其实就是那个可以让 Q value 的值最大的那一个 a。接下来我们要update Q 的值,那就把它当作一个regression 的problem。希望$Q(s_i,a_i)$ 跟你的target 越接近越好。然后假设已经update 了某一个数目的次,比如说 C 次,设 C = 100, 那你就把 $\hat{Q}$ 设成 Q,这就是Q-learning。
|
||||
BIN
docs/chapter3/img/3.1.png
Normal file
|
After Width: | Height: | Size: 1.2 MiB |
BIN
docs/chapter3/img/3.10.png
Normal file
|
After Width: | Height: | Size: 376 KiB |
BIN
docs/chapter3/img/3.11.png
Normal file
|
After Width: | Height: | Size: 331 KiB |
BIN
docs/chapter3/img/3.12.png
Normal file
|
After Width: | Height: | Size: 922 KiB |
BIN
docs/chapter3/img/3.13.png
Normal file
|
After Width: | Height: | Size: 433 KiB |
BIN
docs/chapter3/img/3.14.png
Normal file
|
After Width: | Height: | Size: 1.3 MiB |
BIN
docs/chapter3/img/3.15.png
Normal file
|
After Width: | Height: | Size: 1.3 MiB |
BIN
docs/chapter3/img/3.16.png
Normal file
|
After Width: | Height: | Size: 306 KiB |
BIN
docs/chapter3/img/3.2.png
Normal file
|
After Width: | Height: | Size: 852 KiB |
BIN
docs/chapter3/img/3.3.png
Normal file
|
After Width: | Height: | Size: 836 KiB |
BIN
docs/chapter3/img/3.4.png
Normal file
|
After Width: | Height: | Size: 761 KiB |
BIN
docs/chapter3/img/3.5.png
Normal file
|
After Width: | Height: | Size: 168 KiB |
BIN
docs/chapter3/img/3.6.png
Normal file
|
After Width: | Height: | Size: 924 KiB |
BIN
docs/chapter3/img/3.7.png
Normal file
|
After Width: | Height: | Size: 822 KiB |
BIN
docs/chapter3/img/3.8.png
Normal file
|
After Width: | Height: | Size: 424 KiB |
BIN
docs/chapter3/img/3.9.png
Normal file
|
After Width: | Height: | Size: 338 KiB |
111
docs/chapter4/chapter4.md
Normal file
@@ -0,0 +1,111 @@
|
||||
[toc]
|
||||
# Tips of Q-learning
|
||||
## Double DQN
|
||||

|
||||
接下来我们要讲的是 train Q-learning 的一些 tip。第一个 tip 是做 `Double DQN`。那为什么要有Double DQN 呢?因为在实现上,你会发现 Q value 往往是被高估的。上图来自于 Double DQN 的原始paper,它想要显示的结果就是Q value 往往是被高估的。这边有 4 个不同的小游戏,横轴是training 的时间,红色锯齿状一直在变的线就是 Q-function 对不同的 state estimate 出来的平均Q value,有很多不同的 state,每个state 你都sample 一下,然后算它们的Q value,把它们平均起来。红色这一条线,它在training 的过程中会改变,但它是不断上升的,为什么它不断上升,因为 Q-function 是 depend on 你的policy 的。learn 的过程中你的 policy 越来越强,所以你得到Q 的value 会越来越大。在同一个state, 你得到expected reward 会越来越大,所以general 而言,这个值都是上升的,但这是Q network 估测出来的值。
|
||||
|
||||
接下来你真地去算它,那怎么真地去算?你有那个policy,然后真的去玩那个游戏。,就玩很多次,玩个1 百万次。然后就去真的估说,在某一个state, 你会得到的Q value,到底有多少。你会得到说在某一个state,采取某一个action。你接下来会得到accumulated reward 的总和是多少。你会发现估测出来的值是远比实际的值大。在每一个游戏都是这样,都大很多。所以今天要 propose Double DQN 的方法,它可以让估测的值跟实际的值是比较接近的。我们先看它的结果,蓝色的锯齿状的线是Double DQN 的Q network 所估测出来的Q value,蓝色的无锯齿状的线是真正的Q value,你会发现它们是比较接近的。 用 network 估测出来的就不用管它,比较没有参考价值。用 Double DQN 得出来真正的accumulated reward,在这3 个case,都是比原来的DQN 高的,代表 Double DQN learn 出来那个policy 比较强。所以它实际上得到的reward 是比较大的。虽然一般的DQN 的Q network 高估了自己会得到的reward,但实际上它得到的reward 是比较低的。
|
||||
|
||||

|
||||
|
||||
Q: 为什么Q value 总是被高估了呢?
|
||||
|
||||
A: 因为实际上在做的时候,是要让左边这个式子跟右边我们这个target,越接近越好。那你会发现说,target 的值很容易一不小心就被设得太高。因为在算这个 target 的时候,我们实际上在做的事情是看哪一个a 可以得到最大的Q value,就把它加上去,就变成我们的target。所以假设有某一个action它得到的值是被高估的。
|
||||
|
||||
举例来说, 现在有4 个actions,本来其实它们得到的值都是差不多的,它们得到的reward 都是差不多的。但是在estimate 的时候,那毕竟是个network。所以estimate 的时候是有误差的。所以假设今天是第一个action它被高估了,假设绿色的东西代表是被高估的量,它被高估了,那这个target 就会选这个action。然后就会选这个高估的Q value来加上$r_t$,来当作你的target。如果第4 个action 被高估了,那就会选第4 个action 来加上$r_t$ 来当作你的target value。所以你总是会选那个Q value 被高估的,你总是会选那个reward 被高估的action 当作这个max 的结果去加上$r_t$ 当作你的target。所以你的target 总是太大。
|
||||
|
||||

|
||||
Q: 怎么解决这target 总是太大的问题呢?
|
||||
|
||||
A: 在 Double DQN 里面,选action 的Q-function 跟算value 的Q-function,不是同一个。在原来的DQN 里面,你穷举所有的 a,把每一个a 都带进去, 看哪一个a 可以给你的Q value 最高,那你就把那个Q value 加上$r_t$。但是在 Double DQN 里面,你有两个Q network,第一个Q network,决定哪一个action 的Q value 最大,你用第一个Q network 去带入所有的 a,去看看哪一个Q value 最大,然后你决定你的action 以后。实际上你的Q value 是用$Q'$所算出来的,这样子有什么好处呢?为什么这样就可以避免over estimate 的问题呢?因为今天假设我们有两个 Q-function,假设第一个Q-function 它高估了它现在选出来的action a,那没关系,只要第二个Q-function $Q'$ 没有高估这个action a 的值,那你算出来的,就还是正常的值。假设反过来是 $Q'$ 高估了某一个action 的值,那也没差, 因为反正只要前面这个Q 不要选那个action 出来就没事了。这个就是 Double DQN 神奇的地方。
|
||||
|
||||
Q: 哪来两个Q 跟$Q'$ 呢?哪来两个network 呢?
|
||||
|
||||
A: 在实现上,你有两个Q network, 一个是target 的Q network,一个是真正你会update 的Q network。所以在 Double DQN 里面,你的实现方法会是拿你会update 参数的那个Q network 去选action,然后你拿target 的network,那个固定住不动的network 去算value。而那 Double DQN 相较于原来的DQN 的更改是最少的,它几乎没有增加任何的运算量。连新的network 都不用,因为你原来就有两个network 了。你唯一要做的事情只有,本来你在找最大的a 的时候,你在决定这个a 要放哪一个的时候,你是用$Q'$ 来算,你是用target network 来算,现在改成用另外一个会update 的Q network 来算。
|
||||
|
||||
假如你今天只选一个tip 的话,正常人都是implement Double DQN,因为很容易实现。
|
||||
|
||||
## Dueling DQN
|
||||

|
||||
第二个 tip 是 `Dueling DQN`。其实 Dueling DQN 也蛮好做的,相较于原来的DQN。它唯一的差别是改了network 的架构,Dueling DQN 唯一做的事情是改network 的架构。Q network 就是input state,output 就是每一个action 的Q value。dueling DQN 唯一做的事情,是改了network 的架构,其它的算法,你都不要去动它。
|
||||
|
||||
Q: Dueling DQN 是怎么改了network 的架构呢?
|
||||
|
||||
A: 本来的DQN 就是直接output Q value 的值。现在这个dueling 的DQN,就是下面这个network 的架构。它不直接output Q value 的值,它分成两条path 去运算,第一个path,它算出一个scalar,这个scalar 我们叫做$V(s)$。因为它跟input s 是有关系,所以叫做$V(s)$,$V(s)$ 是一个scalar。下面这个会output 一个vector,这个vector 叫做$A(s,a)$。下面这个vector,它是每一个action 都有一个value。然后你再把这两个东西加起来,就得到你的Q value。
|
||||
|
||||

|
||||
|
||||
Q: 这么改有什么好处?
|
||||
|
||||
A : 那我们假设说,原来的$Q(s,a)$ 就是一个table。我们假设 state 是discrete 的,实际上state 不是discrete 的。那为了说明方便,我们假设就是只有4 个不同的state,只有3 个不同的action,所以$Q(s,a)$ 你可以看作是一个table。
|
||||
|
||||
我们知道:
|
||||
$$
|
||||
Q(s,a) = V(s) + A(s,a)
|
||||
$$
|
||||
|
||||
其中
|
||||
|
||||
* $V(s)$ 是对不同的state 它都有一个值。
|
||||
* $A(s,a)$ 它是对不同的state,不同的action都有一个值。
|
||||
|
||||
你把这个 V 的值加到 A 的每一个 column 就会得到Q 的值。把 2+1,2+(-1),2+0,就得到 3,1,2,以此类推。
|
||||
|
||||
如上图所示,假设说你在train network 的时候,target 是希望这一个值变成 4,这一个值变成 0。但是你实际上能更改的并不是Q 的值,你的network 更改的是V 跟A 的值。根据network 的参数,V 跟A 的值output 以后,就直接把它们加起来,所以其实不是更动Q 的值。然后在learn network 的时候,假设你希望这边的值,这个3 增加1 变成 4,这个-1 增加1 变成 0。最后你在train network 的时候,network 可能会说,我们就不要动这个 A 的值,就动 V 的值,把 V 的值从0 变成 1。把0 变成1 有什么好处呢?你会发现说,本来你只想动这两个东西的值,那你会发现说,这个第三个值也动了,-2 变成 -1。所以有可能说你在某一个state,你明明只sample 到这2 个action,你没sample 到第三个action,但是你其实也可以更改第三个action 的Q value。这样的好处就是你不需要把所有的 state-action pair 都sample 过,你可以用比较efficient 的方式去 estimate Q value 出来。因为有时候你update 的时候,不一定是update 下面这个table。而是只update 了$V(s)$,但update $V(s)$ 的时候,只要一改所有的值就会跟着改。这是一个比较有效率的方法,去使用你的data,这个是Dueling DQN 可以带给我们的好处。
|
||||
|
||||
那可是接下来有人就会问说会不会最后learn 出来的结果是说,反正machine 就学到 V 永远都是 0,然后反正A 就等于 Q,那你就没有得到任何 Dueling DQN 可以带给你的好处, 就变成跟原来的DQN 一模一样。为了避免这个问题,实际上你要给 A 一些constrain,让update A 其实比较麻烦,让network 倾向于会想要去用V 来解问题。
|
||||
|
||||
举例来说,你可以看原始的文献,它有不同的constrain 。那一个最直觉的constrain 是你必须要让这个A 的每一个column 的和都是 0,所以看我这边举的例子,我的column 的和都是 0。那如果这边column 的和都是 0,这边这个V 的值,你就可以想成是上面 Q 的每一个column 的平均值。这个平均值,加上这些值才会变成是Q 的value。所以今天假设你发现说你在update 参数的时候,你是要让整个row 一起被update。你就不会想要update 这边,因为你不会想要update A这个matrix。因为 A 这个matrix 的每一个column 的和都要是 0,所以你没有办法说,让这边的值,通通都+1,这件事是做不到的。因为它的constrain 就是你的和永远都是要 0。所以不可以都+1,这时候就会强迫network 去update V 的值,然后让你可以用比较有效率的方法,去使用你的data。
|
||||
|
||||

|
||||
|
||||
实现时,你要给这个A 一个constrain。举个例子,假设你有3 个actions,然后在这边 output 的 vector 是7 3 2,你在把这个 A 跟这个 V 加起来之前,先加一个normalization,就好像做那个layer normalization 一样。加一个normalization,这个normalization 做的事情就是把7+3+2 加起来等于12,12/3 = 4。然后把这边通通减掉4,变成3, -1, 2。再把3, -1, 2 加上1.0,得到最后的Q value。这个normalization 的 step 就是 network 的其中一部分,在train 的时候,你从这边也是一路 back propagate 回来的,只是 normalization 是没有参数的,它只是一个normalization 的operation。把它可以放到network 里面,跟network 的其他部分 jointly trained,这样A 就会有比较大的constrain。这样network 就会给它一些benefit, 倾向于去update V 的值,这个是Dueling DQN。
|
||||
|
||||
|
||||
## Prioritized Replay
|
||||
|
||||

|
||||
有一个技巧叫做`Prioritized Replay`。Prioritized Replay 是什么意思呢?
|
||||
|
||||
我们原来在sample data 去train 你的Q-network 的时候,你是 uniformly 地从experience buffer,从buffer 里面去sample data。你就是uniform 地去sample 每一笔data,那这样不见得是最好的, 因为也许有一些data 比较重要。假设有一些data,你之前有sample 过。你发现说那一笔data 的 TD error 特别大(TD error 就是你的network 的output 跟target 之间的差距),那这些data 代表说你在train network 的时候, 你是比较train 不好的。那既然比较train 不好, 那你就应该给它比较大的概率被sample 到,这样在training 的时候,才会考虑那些train 不好的training data 多次一点。实际上在做 prioritized replay 的时候,你不只会更改 sampling 的process,你还会因为更改了sampling 的process,你会更改update 参数的方法。所以 prioritized replay 并不只是改变了sample data 的distribution 这么简单,你也会改training process。
|
||||
## Balance between MC and TD
|
||||
|
||||

|
||||
另外一个可以做的方法是,你可以balance MC 跟TD。MC 跟 TD 的方法各自有各自的优劣。我们怎么在MC 跟TD 里面取得一个平衡呢?我们的做法是这样,在TD 里面,在某一个state $s_t$采取某一个action $a_t$ 得到 reward $r_t$,接下来跳到那一个state $s_{t+1}$。但是我们可以不要只存一个step 的data,我们存 N 个step 的data。
|
||||
|
||||
我们记录在$s_t$ 采取$a_t$,得到$r_t$,会跳到什么样$s_t$。一直纪录到在第N 个step 以后,在$s_{t+N}$采取$a_{t+N}$得到 reward $r_{t+N}$,跳到$s_{t+N+1}$的这个经验,通通把它存下来。实际上你今天在做update 的时候, 在做你Q network learning 的时候,你的learning 的方法会是这样,你learning 的时候,要让 $Q(s_t,a_t)$ 跟你的target value 越接近越好。$\hat{Q}$ 所计算的不是$s_{t+1}$,而是$s_{t+N+1}$的。你会把 N 个step 以后的state 丢进来,去计算 N 个step 以后,你会得到的reward。要算 target value 的话,要再加上multi-step 的reward $\sum_{t^{\prime}=t}^{t+N} r_{t^{\prime}}$ ,multi-step 的 reward 是从时间 t 一直到 t+N 的 N 个reward 的和。然后希望你的 $Q(s_t,a_t)$ 和 target value 越接近越好。
|
||||
|
||||
你会发现说这个方法就是MC 跟TD 的结合。因为它就有 MC 的好处跟坏处,也有 TD 的好处跟坏处。如果看它的这个好处的话,因为我们现在 sample 了比较多的step,之前是只sample 了一个step, 所以某一个step 得到的data 是real 的,接下来都是Q value 估测出来的。现在sample 比较多step,sample N 个step 才估测value,所以估测的部分所造成的影响就会比小。当然它的坏处就跟MC 的坏处一样,因为你的 r 比较多项,你把 N 项的 r 加起来,你的variance 就会比较大。但是你可以去调这个N 的值,去在variance 跟不精确的 Q 之间取得一个平衡。N 就是一个hyper parameter,你要调这个N 到底是多少,你是要多 sample 三步,还是多 sample 五步。
|
||||
|
||||
## Noisy Net
|
||||

|
||||
有一个技术是要improve 这个exploration 这件事,我们之前讲的Epsilon Greedy 这样的 exploration 是在action 的space 上面加noise,但是有另外一个更好的方法叫做`Noisy Net`,它是在参数的space 上面加noise。Noisy Net 的意思是说,每一次在一个episode 开始的时候,在你要跟环境互动的时候,你就把你的Q-function 拿出来,Q-function 里面其实就是一个network ,就变成你把那个network 拿出来,在network 的每一个参数上面加上一个Gaussian noise。那你就把原来的Q-function 变成$\tilde{Q}$ 。因为$\hat{Q}$ 已经用过,$\hat{Q}$ 是那个target network,我们用 $\tilde{Q}$ 来代表一个`Noisy Q-function`。我们把每一个参数都可能都加上一个Gaussian noise,就得到一个新的network 叫做$\tilde{Q}$。这边要注意在每个episode 开始的时候,开始跟环境互动之前,我们就 sample network。接下来你就会用这个固定住的 noisy network 去玩这个游戏,直到游戏结束,你才重新再去sample 新的noise。OpenAI 跟 Deep mind 又在同时间 propose 一模一样的方法,通通都publish 在ICLR 2018,两篇paper 的方法就是一样的。不一样的地方是,他们用不同的方法,去加noise。OpenAI 加的方法好像比较简单,他就直接加一个 Gaussian noise 就结束了,就你把每一个参数,每一个weight都加一个Gaussian noise 就结束了。Deep mind 做比较复杂,他们的noise 是由一组参数控制的,也就是说 network 可以自己决定说它那个noise 要加多大,但是概念就是一样的。总之就是把你的Q-function的里面的那个network 加上一些noise,把它变得有点不一样,跟原来的Q-function 不一样,然后拿去跟环境做互动。两篇paper 里面都有强调说,你这个参数虽然会加noise,但在同一个episode 里面你的参数就是固定的,你是在换episode, 玩第二场新的游戏的时候,你才会重新sample noise,在同一场游戏里面就是同一个noisy Q network 在玩那一场游戏,这件事非常重要。为什么这件事非常重要呢?因为这是导致了Noisy Net 跟原来的Epsilon Greedy 或其它在action 做sample 方法的本质上的差异。
|
||||
|
||||

|
||||
|
||||
有什么样本质上的差异呢?在原来sample 的方法,比如说Epsilon Greedy 里面,就算是给同样的state,你的agent 采取的action 也不一定是一样的。因为你是用sample 决定的,given 同一个state,要根据 Q-function 的network,你会得到一个action,你 sample 到random,你会采取另外一个action。所以 given 同样的state,如果你今天是用Epsilon Greedy 的方法,它得到的 action 是不一样的。但实际上你的policy 并不是这样运作的啊。在一个真实世界的policy,给同样的state,他应该会有同样的回应。而不是给同样的state,它其实有时候吃 Q-function,然后有时候又是随机的,所以这是一个不正常的action,是在真实的情况下不会出现的action。但是如果你是在Q-function 上面去加noise 的话, 就不会有这个情形。因为如果你今天在Q-function 上加 noise,在Q-function 的network 的参数上加noise,那在整个互动的过程中,在同一个episode 里面,它的network 的参数总是固定的,所以看到同样的state,或是相似的state,就会采取同样的action,那这个是比较正常的。在paper 里面有说,这个叫做 `state-dependent exploration`,也就是说你虽然会做 explore 这件事, 但是你的explore 是跟state 有关系的,看到同样的state, 你就会采取同样的exploration 的方式,而 noisy 的 action 只是随机乱试。但如果你是在参数下加noise,那在同一个episode 里面,里面你的参数是固定的。那你就是有系统地在尝试,每次会试说,在某一个state,我都向左试试看。然后再下一次在玩这个同样游戏的时候,看到同样的state,你就说我再向右试试看,你是有系统地在explore 这个环境。
|
||||
|
||||
## Distributional Q-function
|
||||

|
||||
|
||||
还有一个技巧叫做 Distributional Q-function。我们不讲它的细节,只告诉你大致的概念。Distributional Q-function 还蛮有道理的, 但是它没有红起来。你就发现说没有太多人真的在实现的时候用这个技术,可能一个原因就是它不好实现。它的意思是什么?Q-function 到底是什么意思啊,Q-function 是 accumulated reward 的期望值,所以我们算出来的这个Q value 其实是一个期望值。因为环境是有随机性的,在某一个state 采取某一个action 的时候,我们把所有的reward 玩到游戏结束的时候所有的 reward 进行一个统计,你其实得到的是一个distribution。也许在reward 得到0 的机率很高,在-10 的概率比较低,在+10 的概率比较低,但是它是一个distribution。我们对这一个distribution 算它的mean才是这个Q value,我们算出来是 expected accumulated reward。所以这accumulated reward 是一个distribution,对它取expectation,对它取mean,你得到了Q value。但不同的distribution,它们其实可以有同样的mean。也许真正的distribution 是右边的distribution,它算出来的 mean 跟左边的 distribution 算出来的mean 其实是一样的,但它们背后所代表的distribution 其实是不一样的。假设我们只用一个 expected 的 Q value 来代表整个reward 的话,其实可能会丢失一些 information,你没有办法 model reward 的distribution。
|
||||
|
||||

|
||||
|
||||
Distributional Q-function 它想要做的事情是model distribution,怎么做呢?在原来的 Q-function 里面,假设你只能够采取 $a_1$, $a_2$, $a_3$, 3 个actions,那你就是input 一个state,output 3 个values。3 个values 分别代表3 个actions 的Q value,但是这个 Q value 是一个distribution 的期望值。所以 Distributional Q-function 的想法就是何不直接output 那个 distribution。但是要直接output 一个distribution 也不知道怎么做嘛。实际上的做法是说, 假设 distribution 的值就分布在某一个 range 里面,比如说-10 到10,那把-10 到10 中间拆成一个一个的bin,拆成一个一个的长条图。举例来说,在这个例子里面,每一个action 的 reward 的space 就拆成 5 个bin。假设reward 可以拆成5 个bin 的话,今天你的Q-function 的output 是要预测说,你在某一个 state,采取某一个action,你得到的reward,落在某一个bin 里面的概率。所以其实这边的概率的和,这些绿色的bar 的和应该是 1,它的高度代表说,在某一个state,采取某一个action 的时候,它落在某一个bin 的机率。这边绿色的代表action 1,红色的代表action 2,蓝色的代表action 3。所以今天你就可以真的用Q-function 去 estimate $a_1$ 的distribution,$a_2$ 的distribution,$a_3$ 的distribution。那实际上在做testing 的时候, 我们还是要选某一个action去执行嘛,那选哪一个action 呢?实际上在做的时候,还是选这个mean 最大的那个action 去执行。但假设我们今天可以 model distribution 的话,除了选mean 最大的以外,也许在未来你可以有更多其他的运用。举例来说,你可以考虑它的distribution 长什么样子。若distribution variance 很大,代表说采取这个action 虽然mean 可能平均而言很不错,但也许风险很高,你可以train一个network 它是可以规避风险的。就在 2 个action mean 都差不多的情况下,也许可以选一个风险比较小的 action 来执行,这是 Distributional Q-function 的好处。关于怎么train 这样的Q network 的细节,我们就不讲,你只要记得说 Q network 有办法output 一个distribution 就对了。我们可以不只是估测得到的期望reward mean 的值。我们其实是可以估测一个distribution 的。
|
||||
|
||||
## Rainbow
|
||||
|
||||

|
||||
|
||||
最后一个技巧叫做 rainbow 。Rainbow 就是把刚才所有的方法都综合起来就变成 rainbow 。因为刚才每一个方法,就是有一种自己的颜色,把所有的颜色通通都合起来,就变成rainbow,它把原来的DQN 也算是一种方法,故有 7 色。
|
||||
|
||||
那我们来看看这些不同的方法。横轴是 training process,纵轴是玩了10 几个 Atari 小游戏的平均的分数的和,但它取的是median 的分数,为什么是取 median 不是直接取平均呢?因为它说每一个小游戏的分数,其实差很多。如果你取平均的话,到时候某几个游戏就dominate 你的结果,所以它取median 的值。
|
||||
|
||||
如果你是一般的DQN,就灰色这一条线,就没有很强。那如果是你换noisy DQN,就强很多。如果这边每一个单一颜色的线是代表说只用某一个方法,那紫色这一条线是DDQN(Double DQN),DDQN 还蛮有效的。然后 Prioritized DDQN、Dueling DDQN 和 Distributional DQN 都蛮强的,它们都差不多很强的。A3C 其实是 Actor-Critic 的方法。单纯的 A3C 看起来是比DQN 强的。这边怎么没有 multi-step 的方法,multi-step 的方法就是 balance TD 跟MC,我猜是因为 A3C 本身内部就有做 multi-step 的方法,所以他可能觉得说有 implement A3C 就算是有 implement multi-step 的方法。所以可以把这个 A3C 的结果想成是 multi-step 方法的结果。其实这些方法他们本身之间是没有冲突的,所以全部都用上去就变成七彩的一个方法,就叫做rainbow,然后它很高。
|
||||
|
||||

|
||||
|
||||
上图是说,在rainbow 这个方法里面, 如果我们每次拿掉其中一个技术,到底差多少。因为现在是把所有的方法都加在一起,发现说进步很多,但会不会有些方法其实是没用的。所以看看说, 每一个方法哪些方法特别有用,哪些方法特别没用。这边的虚线就是拿掉某一种方法以后的结果,你会发现说,黄色的虚线,拿掉 multi-step 掉很多。Rainbow 是彩色这一条,拿掉 multi-step 会掉下来。拿掉Prioritized Replay 后也马上就掉下来。拿掉这个distribution,它也掉下来。
|
||||
|
||||
这边有一个有趣的地方是说,在开始的时候,distribution 训练的方法跟其他方法速度差不多。但是如果你拿掉distribution 的时候,你的训练不会变慢,但是 performance 最后会收敛在比较差的地方。拿掉 Noisy Net 后performance 也是差一点。拿掉Dueling 也是差一点。拿掉 Double 没什么差,所以看来全部合在一起的时候,Double 是比较没有影响的。其实在paper 里面有给一个make sense 的解释,其实当你有用 Distributional DQN的 时候,本质上就不会over estimate 你的reward。我们是为了避免over estimate reward 才加了Double DQN。那在paper 里面有讲说,如果有做 Distributional DQN,就比较不会有over estimate 的结果。 事实上他有真的算了一下发现说,其实多数的状况是 under estimate reward 的,所以会变成Double DQN 没有用。那为什么做 Distributional DQN,不会over estimate reward,反而会under estimate reward 呢?因为这个 distributional DQN 的 output 的是一个distribution 的range,output 的 range 不可能是无限宽的,你一定是设一个range, 比如说我最大output range 就是从-10 到10。假设今天得到的reward 超过10 怎么办?是100 怎么办,就当作没看到这件事。所以 reward 很极端的值,很大的值其实是会被丢掉的, 所以用 Distributional DQN 的时候,你不会有over estimate 的现象,反而会 under estimate。
|
||||
BIN
docs/chapter4/img/4.1.png
Normal file
|
After Width: | Height: | Size: 1.5 MiB |
BIN
docs/chapter4/img/4.10.png
Normal file
|
After Width: | Height: | Size: 961 KiB |
BIN
docs/chapter4/img/4.11.png
Normal file
|
After Width: | Height: | Size: 802 KiB |
BIN
docs/chapter4/img/4.12.png
Normal file
|
After Width: | Height: | Size: 617 KiB |
BIN
docs/chapter4/img/4.13.png
Normal file
|
After Width: | Height: | Size: 1.8 MiB |
BIN
docs/chapter4/img/4.14.png
Normal file
|
After Width: | Height: | Size: 1.5 MiB |
BIN
docs/chapter4/img/4.2.png
Normal file
|
After Width: | Height: | Size: 613 KiB |
BIN
docs/chapter4/img/4.3.png
Normal file
|
After Width: | Height: | Size: 1001 KiB |
BIN
docs/chapter4/img/4.4.png
Normal file
|
After Width: | Height: | Size: 1.4 MiB |
BIN
docs/chapter4/img/4.5.png
Normal file
|
After Width: | Height: | Size: 862 KiB |
BIN
docs/chapter4/img/4.6.png
Normal file
|
After Width: | Height: | Size: 1.0 MiB |
BIN
docs/chapter4/img/4.7.png
Normal file
|
After Width: | Height: | Size: 1.3 MiB |
BIN
docs/chapter4/img/4.8.png
Normal file
|
After Width: | Height: | Size: 920 KiB |
BIN
docs/chapter4/img/4.9.png
Normal file
|
After Width: | Height: | Size: 1.0 MiB |
36
docs/chapter5/chapter5.md
Normal file
@@ -0,0 +1,36 @@
|
||||
|
||||
[toc]
|
||||
# Q-learning for Continuous Actions
|
||||
|
||||

|
||||
|
||||
继续讲一下 Q-learning,其实跟 policy gradient based 方法比起来,Q-learning 其实是比较稳的。policy gradient 其实是没有太多游戏是玩得起来的。policy gradient 其实比较不稳,尤其在没有 PPO 之前,你很难用 policy gradient 做什么事情。Q-learning 相对而言是比较稳的。最早 deepmind 的 paper 拿 deep reinforcement learning 来玩 Atari 的游戏,用的就是 Q-learning。那我觉得 Q-learning 比较容易 train 的一个理由是:在 Q-learning 里面,你只要能够 estimate 出Q-function,就保证你一定可以找到一个比较好的 policy。也就是你只要能够 estimate 出 Q-function,就保证你可以 improve 你的 policy。而 estimate Q-function 这件事情,是比较容易的,为什么?因为它就是一个 regression 的 problem。在这个 regression 的 problem 里面, 你可以轻易地知道说,你现在的 model learn 的是不是越来越好,你只要看那个 regression 的 loss 有没有下降,你就知道说你的 model learn 的好不好。所以 estimate Q-function 相较于 learn 一个 policy 是比较容易的。你只要 estimate Q-function,就可以保证说现在一定会得到比较好的 policy。
|
||||
|
||||
所以一般而言 Q-learning 是比较容易操作。那 Q-learning 有什么问题呢?最大的问题是它不太容易处理 continuous action,很多时候你的 action 是 continuous 的。什么时候你的 action 会是 continuous 的呢?我们玩 Atari 的游戏,你的 agent 只需要决定比如说上下左右,这种 action 是 discrete 的。那很多时候你的 action 是 continuous 的。举例来说假设你的 agent 要做的事情是开自驾车,它要决定说它方向盘要左转几度, 右转几度,这是 continuous 的。假设你的 agent 是一个机器人,假设它身上有 50 个 关节,它的每一个 action 就对应到它身上的这 50 个关节的角度。而那些角度也是 continuous 的。所以很多时候你的 action,并不是一个 discrete 的东西,它是一个 vector,这个 vector 里面,它的每一个 dimension 都有一个对应的 value,都是 real number,它是 continuous 的。
|
||||
|
||||
假设你的 action 是 continuous 的时候,做 Q-learning 就会有困难。因为在做 Q-learning 里面一个很重要的一步是你要能够解这个 optimization 的 problem。你 estimate 出Q-function $Q(s,a)$ 以后,必须要找到一个 a,它可以让 $Q(s,a)$ 最大。假设 a 是 discrete 的,那 a 的可能性都是有限的。举例来说,Atari 的小游戏里面,a 就是上下左右跟开火,它是有限的,你可以把每一个可能的 action 都带到 Q 里面算它的 Q value。但假如 a 是 continuous 的,你无法穷举所有可能 continuous action,试试看哪一个 continuous action 可以让 Q 的 value 最大。所以怎么办呢?在概念上,我们就是要能够解这个问题。怎么解这个问题呢?就有各种不同的 solution。
|
||||
|
||||
第一个 solution 是假设你不知道怎么解这个问题,因为 a 是很多的,a 是没有办法穷举的。怎么办?用 sample 的。Sample 出 N 个 可能的 a,一个一个带到 Q-function 里面,看谁最快?这个方法其实也不会太不 efficient, 因为你真的在运算的时候,你会用 GPU,所以你一次会把 N 个 continuous action都丢到 Q-function 里面,一次得到 N 个 Q value,然后看谁最大。当然这个不是一个 非常精确的做法,因为你真的没有办法做太多的 sample, 所以你 estimate 出来的 Q value,你最后决定的 action 可能不是非常的精确, 这是第一个 solution。
|
||||
|
||||
第二个 solution 是什么呢?今天既然我们要解的是一个 optimization 的 problem。我们其实是要 maximize 我们的 objective function,我们是要 maximize 一个东西, 就可以用 gradient ascent。你就把 a 当作是你的 parameter,然后你要找一组 a 去 maximize 你的 Q-function,你就用 gradient ascent 去 update a 的 value,最后看看你能不能找到一个 a 去 maximize 你的 Q-function,也就是你的 objective function。当然这样子你会遇到的问题,就是 global maximum 的问题, 就不见得能够真的找到 optimal 的结果,而且这个运算量显然很大, 因为你要 iterative 的去 update 你的 a。我们 train 一个 network 就很花时间了。如果你用 gradient ascent 的方法来处理 continuous 的 problem, 等于是你每次要决定要 take 哪一个 action 的时候,你都还要做一次 train network 的 process,显然运算量是很大的。这是第二个 solution。
|
||||
|
||||

|
||||
|
||||
第三个 solution 是特别 design 一个network 的架构,特别 design 你的 Q-function,使得解那个 arg max 的 problem 变得非常容易。也就是这边的 Q-function 不是一个 general 的 Q-function,特别设计一下它的样子,让你要找让这个 Q-function 最大的 a 的时候非常容易。这边是一个例子,这边有我们的 Q-function,然后这个 Q-function 它的做法是这样。
|
||||
|
||||
* Input 你的 state s,通常它就是一个 image, 它可以用一个向量或一个 matrix 来表示。
|
||||
* Input 这个 s,这个 Q-function 会 output 3 个东西。它会 output $\mu(s)$,这是一个 vector。它会 output $\Sigma(s)$ ,这是一个 matrix。它会 output $V(s)$,是一个 scalar。
|
||||
* output 这 3 个东西以后, 我们知道 Q-function 其实是吃一个 s 跟 a,然后决定一个 value。Q-function 意思是说在某一个 state,take 某一个 action 的时候,你 expected 的 reward 有多大。到目前为止这个 Q-function 只吃 s,它还没有吃 a 进来,a 在那里呢,当这个 Q-function 吐出 $\mu$、 $\Sigma$ 跟 $V$ 的时候,我们才把 s 引入,用 a 跟 $\mu(s)、\Sigma(s)、V$ 互相作用一下,你才算出最终的 Q value。
|
||||
|
||||
* a 怎么和这 3 个东西互相作用呢?实际上 $Q(s,a)$,你的 Q-function 的运作方式是先 input s,让你得到 $\mu,\Sigma$ 跟 V。然后再 input a,然后接下来把 a 跟 $\mu$ 相减。注意一下 a 现在是 continuous 的 action,所以它也是一个 vector,假设你现在是要操作机器人的话,这个 vector 的每一个 dimension,可能就对应到机器人的某一个关节,它的数值就是那关节的角度,所以 a 是一个 vector。把 a 的这个 vector减掉 $\mu$ 的这个 vector,取 transpose,所以它是一个横的 vector。$\Sigma$ 是一个 matrix。然后 a 减掉 $\mu(s)$ ,a 和 $\mu(s)$ 都是 vector,减掉以后还是一个竖的 vector。所以 $-(a-\mu(s))^{T} \Sigma(s)(a-\mu(s))+V(s)$ 是一个 scalar,这一个数值就是你的 Q value $Q(s,a)$,。
|
||||
|
||||
* 假设我们的 $Q(s,a)$ 定义成这个样子,我们要怎么找到一个 a去 maximize 这个 Q value 呢?其实这个 solution 非常简单,什么样的 a, 可以让这一个 Q-function 最终的值最大呢?。因为 $(a-\mu(s))^{T} \Sigma(s)(a-\mu(s))$ 一定是正的,它前面乘上一个负号,所以第一项就假设我们不要看这个负号的话,第一项这个值越小,你最终的这个 Q value 就越大。因为我们是把 V(s) 减掉第一项,所以第一项的值越小,最后的 Q value 就越大。怎么让第一项的值最小呢?你直接把 a 带 $\mu$,让它变成 0,就会让第一项的值最小。
|
||||
|
||||
* $\Sigma$ 一定是正定的。因为你知道这个东西就像是那个 Gaussian distribution,所以 $\mu$ 就是 Gaussian 的 mean,$\Sigma$ 就是 Gaussian 的 variance。但 variance 是一个 positive definite 的 matrix,怎么样让这个 $\Sigma$ 一定是 positive definite 的 matrix 呢?其实在 $Q^{\pi}$ 里面,它不是直接 output $\Sigma$,如果直接 output 一个 $\Sigma$, 它不一定是 positive definite 的 matrix。它其实是 output 一个 matrix,然后再把那个 matrix 跟另外一个 matrix 做 transpose 相乘, 然后可以确保 $\Sigma $ 是 positive definite 的。这边要强调的点就是说,实际上它不是直接output 一个 matrix,你再去那个 paper 里面 check 一下它的 trick,它可以保证说 $\Sigma$ 是 positive definite 的。
|
||||
* 你把 a 带 $\mu(s)$ 以后呢,你可以让 Q 的值最大。所以今天假设要你 arg max 这个东西,虽然 in general 而言,若 Q 是一个 general function, 你很难算,但是我们这边 design 了 Q 这个 function,a 只要设 $\mu(s)$,我们就得到 maximum 的 value。你在解这个 arg max 的 problem 的时候就变得非常容易。所以 Q-learning 也可以用在 continuous 的 case,只是就是有一些局限,就是你的 function 就是不能够随便乱设,它必须有一些限制。
|
||||
|
||||

|
||||
|
||||
第 4 招就是不要用 Q-learning。用 Q-learning 处理 continuous 的 action 还是比较麻烦。
|
||||
|
||||
我们讲了 policy based 的方法 PPO ,讲了 value based 的方法 Q-learning。这两者其实是可以结合在一起的, 也就是 Actor-Critic 的方法。
|
||||
BIN
docs/chapter5/img/5.1.png
Normal file
|
After Width: | Height: | Size: 676 KiB |
BIN
docs/chapter5/img/5.2.png
Normal file
|
After Width: | Height: | Size: 794 KiB |
BIN
docs/chapter5/img/5.3.png
Normal file
|
After Width: | Height: | Size: 969 KiB |
122
docs/chapter6/chapter6.md
Normal file
@@ -0,0 +1,122 @@
|
||||
[toc]
|
||||
|
||||
# Actor-Critic
|
||||
|
||||
## Actor-Critic
|
||||
|
||||

|
||||
在 `Actor-Critic` 里面,最知名的方法就是 `A3C(Asynchronous Advantage Actor-Critic)`。如果去掉前面这个 Asynchronous,只有 Advantage Actor-Critic,就叫做 A2C。如果前面加了 Asynchronous,变成 Asynchronous Advantage Actor-Critic,就变成 A3C。
|
||||
|
||||
那我们复习一下 policy gradient,在 policy gradient,我们在 update policy 的参数 $\theta$ 的时候,我们是用了下面这个式子来算出我们的 gradient。
|
||||
$$
|
||||
\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}}\left(\sum_{t^{\prime}=t}^{T_{n}} \gamma^{t^{\prime}-t} r_{t^{\prime}}^{n}-b\right) \nabla \log p_{\theta}\left(a_{t}^{n} \mid s_{t}^{n}\right)
|
||||
$$
|
||||
这个式子是在说,我们先让 agent 去跟环境互动一下,那我们可以计算出在某一个 state s,采取了某一个 action a 的概率 $p_{\theta}(a_t|s_t)$。接下来,我们去计算在某一个 state s 采取了某一个 action a 之后,到游戏结束为止,accumulated reward 有多大。我们把这些 reward 从时间 t 到时间 T 的 reward 通通加起来,并且会在前面乘一个 discount factor,可能设 0.9 或 0.99。我们会减掉一个 baseline b,减掉这个值 b 的目的,是希望括号这里面这一项是有正有负的。如果括号里面这一项是正的,我们就要增加在这个 state 采取这个 action 的机率;如果括号里面是负的,我们就要减少在这个 state 采取这个 action 的机率。
|
||||
|
||||
我们把这个 accumulated reward 用 G 来表示它。但 G 这个值,其实是非常的 unstable 的。为什么会说 G 这个值是非常的 unstable ?因为互动的 process 本身是有随机性的,所以在某一个 state s 采取某一个 action a,然后计算 accumulated reward,每次算出来的结果都是不一样的,所以 G 其实是一个 random variable。给同样的 state s,给同样的 action a,G 可能有一个固定的 distribution。但我们是采取 sample 的方式,我们在某一个 state s 采取某一个 action a,然后玩到底,我们看看得到多少的 reward,我们就把这个东西当作 G。把 G 想成是一个 random variable 的话,我们实际上是对这个 G 做一些 sample,然后拿这些 sample 的结果,去 update 我们的参数。但实际上在某一个 state s 采取某一个 action a,接下来会发生什么事,它本身是有随机性的。虽然说有个固定的 distribution,但它本身是有随机性的,而这个 random variable 的 variance 可能会非常大。你在同一个 state 采取同一个 action,你最后得到的结果可能会是天差地远的。假设我们可以 sample 足够的次数,在每次 update 参数之前,我们都可以 sample 足够的次数,那其实没有什么问题。但问题就是我们每次做 policy gradient,每次 update 参数之前都要做一些 sample,这个 sample 的次数其实是不可能太多的,我们只能够做非常少量的 sample。如果你正好 sample 到差的结果,比如说你sample 到 G = 100,sample 到 G = -10,那显然你的结果会是很差的。
|
||||
|
||||

|
||||
|
||||
能不能让这整个 training process 变得比较 stable 一点,能不能够直接估测 G 这个 random variable 的期望值?我们在 state s 采取 action a 的时候,直接用一个 network 去估测在 state s 采取 action a 的时候,G 的期望值。如果这件事情是可行的,那之后 training 的时候,就用期望值来代替 sample 的值,这样会让 training 变得比较 stable。
|
||||
|
||||
怎么拿期望值代替 sample 的值呢?这边就需要引入 value based 的方法。value based 的方法就是 Q-learning。Q-learning 有两种 functions,有两种 critics。第一种 critic 我们写作 $V^{\pi}(s)$,它的意思是说,假设 actor 是 $\pi$,拿 $\pi$ 去跟环境做互动,当今天我们看到 state s 的时候,接下来 accumulated reward 的期望值有多少。还有一个 critic 叫做 $Q^{\pi}(s,a)$。$Q^{\pi}(s,a)$ 把 s 跟 a 当作 input,它的意思是说,在 state s 采取 action a,接下来都用 actor $\pi$ 来跟环境进行互动,accumulated reward 的期望值是多少。
|
||||
|
||||
$V^{\pi}$ input s,output 一个 scalar。$Q^{\pi}$ input s,然后它会给每一个 a 都 assign 一个 Q value。这个 estimate 的时候,你可以用 TD 也可以用 MC。用TD 比较稳,用 MC 比较精确。
|
||||
|
||||

|
||||
|
||||
G 的 random variable 的期望值正好就是 Q ,即
|
||||
$$
|
||||
E\left[G_{t}^{n}\right]=Q^{\pi_{\theta}\left(s_{t}^{n}, a_{t}^{n}\right)}
|
||||
$$
|
||||
|
||||
因为这个就是 Q 的定义。Q 的定义就是在某一个 state s,采取某一个 action a,假设 policy 就是 $\pi$ 的情况下会得到的 accumulated reward 的期望值有多大,而这个东西就是 G 的期望值。为什么会这样,因为这个就是 Q 的定义,Q-function 的定义。Accumulated reward 的期望值就是 G 的期望值。所以假设用期望值来代表 $\sum_{t^{\prime}=t}^{T_{n}} \gamma^{t^{\prime}-t} r_{t^{\prime}}^{n}$ 这一项的话,把 Q-function 套在这里就结束了。那我们就可以 Actor 跟 Critic 这两个方法结合起来。
|
||||
|
||||
有什么不同的方法来表示 baseline,但一个常见的做法是,你用 value function $V^{\pi_{\theta}}\left(s_{t}^{n}\right)$ 来表示 baseline。Value function 的意思是说,假设 policy 是 $\pi$,在某一个 state s 一直 interact 到游戏结束。那你 expected 的 reward 有多大。 $V^{\pi_{\theta}}\left(s_{t}^{n}\right)$ 没有 involve action,然后 $ Q^{\pi_{\theta}\left(s_{t}^{n}, a_{t}^{n}\right)}$ 有 involve action。其实 $V^{\pi_{\theta}}\left(s_{t}^{n}\right)$ 会是 $Q^{\pi_{\theta}\left(s_{t}^{n}, a_{t}^{n}\right)}$ 的期望值,所以$Q^{\pi_{\theta}\left(s_{t}^{n}, a_{t}^{n}\right)}-V^{\pi_{\theta}}\left(s_{t}^{n}\right)$ 会有正有负,所以 $\sum_{t^{\prime}=t}^{T_{n}} \gamma^{t^{\prime}-t} r_{t^{\prime}}^{n}-b$ 这一项就会是有正有负的。
|
||||
|
||||
所以我们就把 policy gradient 里面 $\sum_{t^{\prime}=t}^{T_{n}} \gamma^{t^{\prime}-t} r_{t^{\prime}}^{n}-b$ 这一项换成了 $Q^{\pi_{\theta}\left(s_{t}^{n}, a_{t}^{n}\right)}-V^{\pi_{\theta}}\left(s_{t}^{n}\right)$。
|
||||
|
||||

|
||||
|
||||
如果你这么实现的话,有一个缺点是,你要 estimate 2 个 networks,而不是一个 network。你要 estimate Q 这个 network,你也要 estimate V 这个 network,你 estimate 估测不准的风险就变成两倍。所以我们何不只估测一个 network 就好了呢?事实上在这个 Actor-Critic 方法里面。你可以只估测 V 这个 network,你可以用 V 的值来表示 Q 的值,什么意思呢?$Q^{\pi}\left(s_{t}^{n}, a_{t}^{n}\right)$可以写成$r_{t}^{n}+V^{\pi}\left(s_{t+1}^{n}\right)$的期望值,即
|
||||
|
||||
$$
|
||||
Q^{\pi}\left(s_{t}^{n}, a_{t}^{n}\right)=E\left[r_{t}^{n}+V^{\pi}\left(s_{t+1}^{n}\right)\right]
|
||||
$$
|
||||
|
||||
你在 state s 采取 action a,接下来你会得到 reward r,然后跳到 state, $s_{t+1}$,但是你会得到什么样的 reward r,跳到什么样的 state $s_{t+1}$,它本身是有随机性的。所以要把右边这个式子,取期望值它才会等于 Q-function。但我们现在把期望值这件事情去掉,即
|
||||
$$
|
||||
Q^{\pi}\left(s_{t}^{n}, a_{t}^{n}\right)=r_{t}^{n}+V^{\pi}\left(s_{t+1}^{n}\right)
|
||||
$$
|
||||
|
||||
我们就可以把 Q-function 用 r + V 取代掉,然后得到下式
|
||||
$$
|
||||
r_{t}^{n}+V^{\pi}\left(s_{t+1}^{n}\right)-V^{\pi}\left(s_{t}^{n}\right)
|
||||
$$
|
||||
把这个期望值去掉的好处就是你不需要再 estimate Q 了,你只需要 estimate V 就够了。你只要 estimate 一个 network 就够了,你不需要 estimate 2 个 network,你只需要 estimate 一个 network 就够了。但这样你就引入了一个随机的东西 r ,它是有随机性的,它是一个 random variable。但是这个 random variable,相较于刚才的 accumulated reward G 可能还好,因为它是某一个 step 会得到的 reward。而 G 是所有未来会得到的 reward 的总和。G variance 比较大,r 虽然也有一些 variance,但它的 variance 会比 G 要小。所以把原来 variance 比较大的 G 换成 variance 比较小的 r 也是合理的。如果你觉得把期望值拿掉不靠谱的话,那我就告诉你原始的 A3C paper,它试了各式各样的方法,最后做出来就是这个最好这样。当然你可能说,搞不好 estimate Q 跟 V 也都 estimate 很好,那我告诉你就是做实验的时候,最后结果就是这个最好。所以后来大家都用这个。
|
||||
|
||||

|
||||
|
||||
因为
|
||||
$$
|
||||
r_{t}^{n}+V^{\pi}\left(s_{t+1}^{n}\right)-V^{\pi}\left(s_{t}^{n}\right)
|
||||
$$
|
||||
叫做 `Advantage function`。所以这整个方法就叫 `Advantage Actor-Critic`。整个流程是这样子的。
|
||||
|
||||
我们现在先有一个$\pi$,有个初始的 actor 去跟环境做互动,先收集资料。在每一个 policy gradient 收集资料以后,你就要拿去 update 你的 policy。但是在 actor-critic 方法里面,你不是直接拿那些资料去 update 你的 policy。你先拿这些资料去 estimate 出你的 value function,你可以用 TD 或 MC 来 estimate value function 。接下来,你再 based on value function。套用下面这个式子去 update 你的 $\pi$。
|
||||
|
||||
$$
|
||||
\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_{n}}\left(r_{t}^{n}+V^{\pi}\left(s_{t+1}^{n}\right)-V^{\pi}\left(s_{t}^{n}\right)\right) \nabla \log p_{\theta}\left(a_{t}^{n} \mid s_{t}^{n}\right)
|
||||
$$
|
||||
然后你有了新的 $\pi$ 以后,再去跟环境互动,再收集新的资料,去 estimate 你的 value function。然后再用新的 value function,去 update 你的 policy,去 update 你的 actor。整个 actor-critic 的 algorithm 就是这么运作的。
|
||||
|
||||

|
||||
|
||||
Implement Actor-Critic 的时候,有两个一定会用的 tip。第一个 tip 是说,我们需要 estimate 两个 network,estimate V function,另外一个需要 estimate 的 network 是 policy 的 network,也就是你的 actor。 V 那个 network 它是 input 一个 state,output 一个 scalar。然后 actor 这个 network,它是 input 一个 state,output 就是一个 action 的 distribution。假设你的 action 是 discrete 不是 continuous 的话,如果是 continuous 的话,它也是一样。如果是 continuous 的话,就只是 output 一个 continuous 的 vector。上图是举的是 discrete 的例子,但 continuous 的 case 其实也是一样的,input 一个 state,然后他决定你现在要 take 那一个 action。
|
||||
|
||||
这两个 network,actor 跟你的 critic,跟你的 value function,它们的 input 都是 s。所以他们前面几个 layer,其实是可以 share 的。尤其是假设你今天是玩 Atari 游戏,input 都是 image。那 input 那个 image 都非常复杂,image 很大,通常你前面都会用一些 CNN 来处理,把那些 image 抽象成 high level 的 information。把 pixel level 到 high level information 这件事情,其实对 actor 跟 critic 来说是可以共用的。所以通常你会让 actor 跟 critic 的前面几个 layer 是 shared,你会让 actor 跟 critic 的前面几个 layer 共用同一组参数。那这一组参数可能是 CNN。先把 input 的 pixel 变成比较 high level 的信息,然后再给 actor 去决定说它要采取什么样的行为,给这个 critic,给 value function 去计算expected reward。
|
||||
|
||||
那另外一个事情是,我们一样需要 exploration 的机制,在做 Actor-Critic 的时候,有一个常见的 exploration 的方法是你会对你的 $\pi$ 的 output 的 distribution 下一个 constrain。这个 constrain 是希望这个 distribution 的 entropy 不要太小,希望这个 distribution 的 entropy 可以大一点,也就是希望不同的 action 它的被采用的机率,平均一点。这样在 testing 的时候,它才会多尝试各种不同的 action,才会把这个环境探索的比较好,才会得到比较好的结果。这个就是 advantage 的 Actor-Critic。
|
||||
|
||||
## A3C
|
||||

|
||||
|
||||
什么是 A3C 呢?Reinforcement learning 有一个问题就是它很慢。那怎么增加训练的速度呢?这个可以讲到火影忍者就是有一次鸣人说,他想要在一周之内打败晓,所以要加快修行的速度,他老师就教他一个方法,这个方法是说你只要用影分身进行同样修行。那两个一起修行的话呢?经验值累积的速度就会变成2倍,所以,鸣人就开了 1000 个影分身,开始修行了。这个其实就是 Asynchronous(异步的) Advantage Actor-Critic,也就是 A3C 这个方法的精神。
|
||||
|
||||

|
||||
|
||||
A3C 这个方法就是同时开很多个 worker,那每一个 worker 其实就是一个影分身。那最后这些影分身会把所有的经验,通通集合在一起。首先你如果没有很多个 CPU,可能也是不好实现的,你可以 implement A2C 就好。
|
||||
|
||||
这个 A3C 是怎么运作的呢?A3C 是这样子,一开始有一个 global network。那我们刚才有讲过说,其实 policy network 跟 value network 是 tie 在一起的,他们的前几个 layer 会被 tie 一起。我们有一个 global network,它们有包含 policy 的部分和 value 的部分。假设它的参数就是 $\theta_1$,你会开很多个 worker。每一个 worker 就用一张 CPU 去跑,比如你就开 8 个 worker ,那你至少 8 张 CPU。第一个 worker 就把 global network 的参数 copy 过来,每一个 worker 工作前都会global network 的参数 copy 过来。接下来你就去跟环境做互动,每一个 actor 去跟环境做互动的时候,为了要 collect 到比较 diverse 的 data,所以举例来说如果是走迷宫的话,可能每一个 actor 起始的位置都会不一样,这样它们才能够收集到比较多样性的 data。每一个 actor 就自己跟环境做互动,互动完之后,你就会计算出 gradient。那计算出 gradient 以后,你要拿 gradient 去 update 你的参数。你就计算一下你的 gradient,然后用你的 gradient 去 update global network 的参数。就是这个 worker 算出 gradient 以后,就把 gradient 传回给中央的控制中心。然后中央的控制中心,就会拿这个 gradient 去 update 原来的参数。但是要注意一下,所有的 actor 都是平行跑的,就每一个 actor 就是各做各的,互相之间就不要管彼此。所以每个人都是去要了一个参数以后,做完就把参数传回去。所以当第一个 worker 做完想要把参数传回去的时候,本来它要的参数是 $\theta_1$,等它要把 gradient 传回去的时候。可能别人已经把原来的参数覆盖掉,变成 $\theta_2$了。但是没有关系,它一样会把这个 gradient 就覆盖过去就是了。Asynchronous actor-critic 就是这么做的,这个就是 A3C。
|
||||
|
||||

|
||||
|
||||
讲完 A3C 之后,我们要讲另外一个方法叫做 `Pathwise Derivative Policy Gradient`,这个方法很神奇,它可以想成是 Q-learning 解 continuous action 的一种特别的方法。那它也可以想成是一种特别的 Actor-Critic 的方法。
|
||||
用棋灵王来比喻的话,阿光是一个 actor,佐为是一个 critic。阿光落某一子以后呢,如果佐为是一般的 Actor-Critic,他会告诉他说这时候不应该下小马步飞,他会告诉你,你现在采取的这一步算出来的 value 到底是好还是不好,但这样就结束了,他只告诉你说好还是不好。因为一般的这个 Actor-Critic 里面那个 critic 就是 input state 或 input state 跟 action 的 pair,然后给你一个 value 就结束了。所以对 actor 来说,它只知道它做的这个行为到底是好还是不好。但如果是在pathwise derivative policy gradient 里面,这个 critic 会直接告诉 actor 说采取什么样的 action 才是好的。所以今天佐为不只是告诉阿光说,这个时候不要下小马步飞,同时还告诉阿光说这个时候应该要下大马步飞,所以这个就是Pathwise Derivative Policy Gradient 中的 critic。critic 会直接告诉 actor 做什么样的 action 才可以得到比较大的 value。
|
||||
|
||||
从 Q-learning 的观点来看,Q-learning 的一个问题是你没有办法在用 Q-learning 的时候,考虑 continuous vector。其实也不是完全没办法,就是比较麻烦,比较没有 general solution,我们怎么解这个 optimization problem 呢?我们用一个 actor 来解这个 optimization 的 problem。本来在 Q-learning 里面,如果是一个 continuous action,我们要解这个 optimization problem。但是现在这个 optimization problem 由 actor 来解,我们假设 actor 就是一个 solver,这个 solver 的工作就是给你 state, s,然后它就去解解告诉我们说,哪一个 action 可以给我们最大的 Q value,这是从另外一个观点来看 pathwise derivative policy gradient 这件事情。这个说法,你有没有觉得非常的熟悉呢?我们在讲 GAN 的时候,不是也讲过一个说法。我们 learn 一个 discriminator,它是要 evaluate 东西好不好,discriminator 要自己生成东西,非常的困难,那怎么办?因为要解一个 arg max 的 problem 非常的困难,所以用 generator 来生,所以今天的概念其实是一样的。Q 就是那个 discriminator,要根据这个 discriminator 决定 action 非常困难,怎么办?另外 learn 一个 network 来解这个 optimization problem,这个东西就是 actor。所以,两个不同的观点是同一件事,从两个不同的观点来看,一个观点是说,我们可以对原来的 Q-learning 加以改进,怎么改进呢?我们 learn 一个 actor 来决定 action 以解决 arg max 不好解的问题。或是另外一个观点是,原来的 actor-critic 的问题是 critic 并没有给 actor 足够的信息,它只告诉它好或不好,没有告诉它说什么样叫好,那现在有新的方法可以直接告诉 actor 说,什么样叫做好。
|
||||
|
||||

|
||||
|
||||
那我们讲一下它的 algorithm。假设我们 learn 了一个 Q-function,Q-function 就是 input s 跟 a,output 就是 $Q^{\pi}(s,a)$。那接下来,我们要 learn 一个 actor,这个 actor 的工作就是解这个 arg max 的 problem。这个 actor 的工作就是 input 一个 state s,希望可以 output 一个 action a。这个 action a 被丢到 Q-function 以后,它可以让 $Q^{\pi}(s,a)$ 的值越大越好。那实际上在 train 的时候,你其实就是把 Q 跟 actor 接起来变成一个比较大的 network。Q 是一个 network,input s 跟 a,output 一个 value。Actor 在 training 的时候,它要做的事情就是 input s,output a。把 a 丢到 Q 里面,希望 output 的值越大越好。在 train 的时候会把 Q 跟 actor 接起来,当作是一个大的 network。然后你会 fix 住 Q 的参数,只去调 actor 的参数,就用 gradient ascent 的方法去 maximize Q 的 output。这就是一个 GAN,这就是 conditional GAN。Q 就是 discriminator,但在 reinforcement learning 就是 critic,actor 在 GAN 里面就是 generator,其实它们就是同一件事情。
|
||||
|
||||

|
||||
|
||||
我们来看一下这个pathwise derivative policy gradient 的算法。一开始你会有一个 actor $\pi$,它去跟环境互动,然后,你可能会要它去 estimate Q value。estimate 完 Q value 以后,你就把 Q value 固定,只去 learn 一个 actor。假设这个 Q 估得是很准的,它知道在某一个 state 采取什么样的 action,会真的得到很大的 value。接下来就 learn 这个 actor,actor 在 given s 的时候,它采取了 a,可以让最后 Q-function 算出来的 value 越大越好。你用这个 criteria 去 update 你的 actor $\pi$。然后有新的 $\pi$ 再去跟环境做互动,再 estimate Q,再得到新的 $\pi$ 去 maximize Q 的 output。本来在 Q-learning 里面,你用得上的技巧,在这边也几乎都用得上,比如说 replay buffer、exploration 等等。
|
||||
|
||||

|
||||
|
||||
上图是原来 Q-learning 的 algorithm。你有一个 Q-function Q,你有另外一个 target 的 Q-function 叫做 $\hat{Q}$。然后在每一次 training,在每一个 episode 的每一个 timestamp 里面,你会看到一个 state $s_t$,你会 take 某一个 action $a_{t}$。至于 take 哪一个 action 是由 Q-function 所决定的,因为解一个 arg max 的 problem。如果是 discrete 的话没有问题,你就看说哪一个 a 可以让 Q 的 value 最大,就 take 哪一个 action。那你需要加一些 exploration,这样 performance 才会好。你会得到 reward $r_t$,跳到新的 state $s_{t+1}$。你会把 $s_t$, $a_{t}$, $r_t$, $s_{t+1}$ 塞到你的 buffer 里面去。你会从你的 buffer 里面 sample 一个 batch 的 data,这个 batch data 里面,可能某一笔是 $s_i, a_i, r_i, s_{i+1}$。接下来你会算一个 target,这个 target 叫做$y$ ,$y=r_{i}+\max _{a} \hat{Q}\left(s_{i+1}, a\right)$。然后怎么 learn 你的 Q 呢?你希望 $Q(s_i,a_i)$ 跟 y 越接近越好,这是一个 regression 的 problem,最后每 C 个 step,你要把用 Q 替代 $\hat{Q}$ 。
|
||||
|
||||

|
||||
|
||||
接下来我们把它改成 Pathwise Derivative Policy Gradient,这边就是只要做四个改变就好。
|
||||
|
||||
* 第一个改变是,你要把 Q 换成 $\pi$,本来是用 Q 来决定在 state $s_t$ 产生那一个 action, $a_{t}$ 现在是直接用 $\pi$ 。我们不用再解 arg max 的 problem 了,我们直接 learn 了一个 actor。这个 actor input $s_t$ 就会告诉我们应该采取哪一个 $a_{t}$。所以本来 input $s_t$,采取哪一个 $a_t$,是 Q 决定的。在 Pathwise Derivative Policy Gradient 里面,我们会直接用 $\pi$ 来决定,这是第一个改变。
|
||||
* 第二个改变是,本来这个地方是要计算在 $s_{i+1}$,根据你的 policy 采取某一个 action a 会得到多少的 Q value。那你会采取让 $\hat{Q}$ 最大的那个 action a。那现在因为我们其实不好解这个 arg max 的 problem,所以 arg max problem,其实现在就是由 policy $\pi$ 来解了,所以我们就直接把 $s_{i+1}$ 代到 policy $\pi$ 里面,你就会知道说 given $s_{i+1}$ ,哪一个 action 会给我们最大的 Q value,那你在这边就会 take 那一个 action。在 Q-function 里面,有两个 Q network,一个是真正的 Q network,另外一个是 target Q network。那实际上你在 implement 这个 algorithm 的时候,你也会有两个 actor,你会有一个真正要 learn 的 actor $\pi$,你会有一个 target actor $\hat{\pi}$ 。这个原理就跟为什么要有 target Q network 一样,我们在算 target value 的时候,我们并不希望它一直的变动,所以我们会有一个 target 的 actor 和一个 target 的 Q-function,它们平常的参数就是固定住的,这样可以让你的这个 target 的 value 不会一直地变化。所以本来到底是要用哪一个 action a,你会看说哪一个 action a 可以让 $\hat{Q}$ 最大。但现在因为哪一个 action a 可以让 $\hat{Q}$ 最大这件事情已经被用那个 policy 取代掉了,所以我们要知道哪一个 action a 可以让 $\hat{Q}$ 最大,就直接把那个 state 带到 $\hat{\pi}$ 里面,看它得到哪一个 a,就用那一个 a,那一个 a 就是会让 $\hat{Q}(s,a)$ 的值最大的那个 a 。其实跟原来的这个 Q-learning 也是没什么不同,只是原来你要解 arg max 的地方,通通都用 policy 取代掉了,那这个是第二个不同。
|
||||
* 第三个不同就是之前只要 learn Q,现在你多 learn 一个 $\pi$,那 learn $\pi$ 的时候的方向是什么呢?learn $\pi$ 的目的,就是为了 maximize Q-function,希望你得到的这个 actor,它可以让你的 Q-function output 越大越好,这个跟 learn GAN 里面的 generator 的概念。其实是一样的。
|
||||
* 第四个 step,就跟原来的 Q-function 一样。你要把 target 的 Q network 取代掉,你现在也要把 target policy 取代掉。
|
||||
|
||||

|
||||
|
||||
其实 GAN 跟 Actor-Critic 的方法是非常类似的。这边就不细讲,你可以去找到一篇 paper 叫做 Connecting Generative Adversarial Network and Actor-Critic Methods。知道 GAN 跟 Actor-Critic 非常像有什么帮助呢?一个很大的帮助就是 GAN 跟 Actor-Critic 都是以难 train 而闻名的。所以在文献上就会收集各式各样的方法,告诉你说怎么样可以把 GAN train 起来。怎么样可以把 Actor-Critic train 起来。但是因为做 GAN 跟 Actor-Critic 的人是两群人,所以这篇 paper 里面就列出说在 GAN 上面有哪些技术是有人做过的,在 Actor-Critic 上面,有哪些技术是有人做过的。也许在 GAN 上面有试过的技术,你可以试着 apply 在 Actor-Critic 上,在 Actor-Critic 上面做过的技术,你可以试着 apply 在 GAN 上面,看看是否work。
|
||||
BIN
docs/chapter6/img/6.1.png
Normal file
|
After Width: | Height: | Size: 449 KiB |
BIN
docs/chapter6/img/6.10.png
Normal file
|
After Width: | Height: | Size: 850 KiB |
BIN
docs/chapter6/img/6.11.png
Normal file
|
After Width: | Height: | Size: 1.3 MiB |
BIN
docs/chapter6/img/6.12.png
Normal file
|
After Width: | Height: | Size: 448 KiB |
BIN
docs/chapter6/img/6.13.png
Normal file
|
After Width: | Height: | Size: 522 KiB |
BIN
docs/chapter6/img/6.14.png
Normal file
|
After Width: | Height: | Size: 1.8 MiB |
BIN
docs/chapter6/img/6.2.png
Normal file
|
After Width: | Height: | Size: 510 KiB |
BIN
docs/chapter6/img/6.3.png
Normal file
|
After Width: | Height: | Size: 718 KiB |
BIN
docs/chapter6/img/6.4.png
Normal file
|
After Width: | Height: | Size: 744 KiB |
BIN
docs/chapter6/img/6.5.png
Normal file
|
After Width: | Height: | Size: 1.2 MiB |
BIN
docs/chapter6/img/6.6.png
Normal file
|
After Width: | Height: | Size: 802 KiB |
BIN
docs/chapter6/img/6.7.png
Normal file
|
After Width: | Height: | Size: 3.2 MiB |
BIN
docs/chapter6/img/6.8.png
Normal file
|
After Width: | Height: | Size: 783 KiB |
BIN
docs/chapter6/img/6.9.png
Normal file
|
After Width: | Height: | Size: 2.0 MiB |
83
docs/chapter7/chapter7.md
Normal file
@@ -0,0 +1,83 @@
|
||||
[toc]
|
||||
# Sparse Reward
|
||||
实际上我们用 reinforcement learning learn agent 的时候,多数的时候 agent 都是没有办法得到 reward 的。那在没有办法得到reward 的情况下,对agent 来说它的训练是非常困难的。举例来说,假设你今天要训练一个机器手臂,然后桌上有一个螺丝钉跟螺丝起子,那你要训练它用螺丝起子把螺丝钉栓进去,那这个很难,为什么?因为你知道一开始你的 agent 是什么都不知道的,它唯一能够做不同的action 的原因是 exploration。举例来说,你在做Q learning 的时候,会有一些随机性,让它去采取一些过去没有采取过的 action,那你要随机到说它把螺丝起子捡起来,再把螺丝栓进去,然后就会得到reward 1,这件事情是永远不可能发生的。所以,不管你的actor 做了什么事情,它得到reward 永远都是 0,对它来说不管采取什么样的 action 都是一样糟或者是一样得好。所以,它最后什么都不会学到。如果环境中的 reward 非常的 sparse,reinforcement learning 的问题就会变得非常的困难。但是人类可以在非常 sparse 的reward 上面去学习,我们的人生通常多数的时候,我们就只是活在那里,都没有得到什么reward 或者是penalty。但是,人还是可以采取各种各式各样的行为。所以,一个真正厉害的 AI 应该能够在 sparse reward 的情况下也学到要怎么跟这个环境互动。
|
||||
|
||||
怎么解决sparse reward 的这件事情呢?我们等一下会讲三个方向。
|
||||
## Reward Shaping
|
||||

|
||||
|
||||
第一个方向叫做reward shaping,reward shaping 的意思是说环境有一个固定的reward,它是真正的 reward,但是我们为了让 agent 学出来的结果是我们要的样子,我们刻意地设计了一些reward 来引导我们的agent。举例来说,如果是把小孩当成一个 agent 的话。那一个小孩,他可以take 两个actions,一个action 是他可以出去玩,那他出去玩的话,在下一秒钟它会得到reward 1。但是他在月考的时候,成绩可能会很差。所以在100 个小时之后呢,他会得到 reward -100。然后,他也可以决定要念书,然后在下一个时间,因为他没有出去玩,所以他觉得很不爽,所以他得到 reward -1。但是在100 个小时后,他可以得到reward 100。但对一个小孩来说,他可能就会想要 take play 而不是 take study。我们计算的是accumulated reward,但也许对小孩来说,他的discount factor 会很大,所以他就不太在意未来的reward。而且因为他是一个小孩,他还没有很多experience,所以他的 Q-function estimate 是非常不精准的。所以要他去 estimate 很远以后会得到的 accumulated reward,他其实是预测不出来的。所以这时候大人就要引导他,怎么引导呢?就骗他说,如果你坐下来念书我就给你吃一个棒棒糖。所以,对他来说,下一个时间点会得到的 reward 就变成是positive 的。所以他就觉得说,也许 take 这个 study 是比 play 好的。虽然这并不是真正的reward,而是其他人骗他的reward,告诉他说你采取这个 action 是好的。所以reward shaping 的概念是一样的,简单来说,就是你自己想办法 design 一些reward,它不是环境真正的reward。有在玩Atari 游戏里面,真的 reward 是游戏主机给你的reward,但你自己去设一些 reward 好引导你的 machine,做你想要它做的事情。
|
||||
|
||||

|
||||
|
||||
举例来说,这个例子是 Facebook 玩 VizDoom 的 agent。VizDoom是一个第一人射击游戏,在这个射击游戏中,杀了敌人就得到 positive reward,被杀就得到 negative reward。他们设计了一些新的reward,用新的 reward 来引导 agent 让他们做得更好,这不是游戏中真正的reward。
|
||||
|
||||
比如说掉血就扣0.05的分数,弹药减少就扣分,捡到补给包就加分,呆在原地就扣分,移动就加分。 活着会扣一个很小的分数,因为不这样做的话,machine 会只想活着,一直躲避敌人,这样会让 machine 好战一点。表格中的参数都是调出来的。
|
||||
|
||||
Reward Shaping 是有问题的,因为我们需要domain knowledge,举例来说,机器人想要学会的事情是把蓝色的板子从这个柱子穿过去。机器人很难学会,我们可以做 Reward Shaping。一个貌似合理的说法是,蓝色的板子离柱子越近,reward 越大。但是 machine 靠近的方式会有问题,它会用蓝色的板子打柱子。而我们要把蓝色板子放在柱子上面去,才能把蓝色板子穿过柱子。 这种 Reward Shaping 的方式是没有帮助的,那至于什么 reward shaping 有帮助,什么 reward shaping 没帮助,会变成一个 domain knowledge,你要去调的。
|
||||
|
||||
## Curiosity
|
||||

|
||||
|
||||
接下来就是介绍各种你可以自己加进去,in general 看起来是有用的reward。举例来说,一个技术是给 machine 加上 curiosity,所以叫 `curiosity driven 的reward`。上图是我们之前讲 Actor-Critic 的时候看过的图。我们有一个 reward function,它给你某一个state,给你某一个action,它就会评断说在这个 state 采取 这个action 得到多少的reward。那我们当然希望 total reward 越大越好。在curiosity driven 的这种技术里面,你会加上一个新的 reward function。这个新的 reward function 叫做 `ICM(intrinsic curiosity module)`,它就是要给机器加上好奇心。ICM 会吃3 个东西,它会吃 state $s_1$、action $a_1$ 和 state $s_2$。根据$s_1$ 、$a_1$、 $a_2$,它会output 另外一个reward,我们这边叫做$r_1^i$。对 machine 来说,total reward 并不是只有 r 而已,还有$r^i$。它不是只有把所有的 r 都加起来,它还把所有 $r^i$ 加起来当作total reward。所以,它在跟环境互动的时候,它不是只希望 r 越大越好,它还同时希望 $r^i$ 越大越好,它希望从 ICM 的 module 里面得到的 reward 越大越好。ICM 就代表了一种curiosity。
|
||||
|
||||
|
||||

|
||||
|
||||
怎么设计这个ICM?这个是最原始的设计。这个设计是这样。curiosity module 就是 input 3 个东西,input 现在的 state,input 在这个 state 采取的 action,然后接 input 下一个 state $s_{t+1}$。接下来会 output 一个 reward $r^i_t$。那这个 $r^i_t$ 是怎么算出来的呢?在ICM 里面,你有一个network,这个network 会 take $a_t$ 跟$s_t$,然后去 output $\hat{s}_{t+1}$,也就是这个 network 根据 $a_t$ 和 $s_t$ 去 predict $\hat{s}_{t+1}$ 。接下来再看说,这个network 的预测 $\hat{s}_{t+1}$ 跟真实的情况 $s_{t+1}$ 像不像,越不像那得到的reward 就越大。所以这个reward $r_t^i$ 的意思是说,如果未来的 state 越难被预测的话,那得到的 reward 就越大。这就是鼓励 machine 去冒险,现在采取这个action,未来会发生什么事越没有办法预测的话,这个action 的 reward 就大。所以如果有这样子的 ICM,machine 就会倾向于采取一些风险比较大的 action,它想要去探索未知的世界,它想要去看看说,假设某一个 state 是它没有办法预测,它会特别去想要采取那个 state,这可以增加 machine exploration 的能力。
|
||||
|
||||
这个 network 1 其实是另外 train 出来的。Training 的时候,这个network 1,你会给它 $a_t$、 $s_t$、 $s_{t+1}$,然后让这个network 1 去学说 given $a_t, s_t$,怎么 predict $\hat{s}_{t+1}$。Apply 到 agent 互动的时候,其实要把 ICM module fix 住。其实,这一整个想法里面是有一个问题的,这个问题是什么呢?这个问题是,某一些 state它很难被预测,并不代表它就是好的,它就应该要去被尝试的。举例来说,俄罗斯轮盘的结果也是没有办法预测的,并不代表说,人应该每天去玩俄罗斯轮盘这样子。所以只是鼓励 machine 去冒险是不够的,因为如果光是只有这个network 的架构,machine 只知道说什么东西它无法预测。如果在某一个 state 采取某一个 action,它无法预测接下来结果,它就会采取那个action,但并不代表这样的结果一定是好的。举例来说,可能在某个游戏里面,背景会有风吹草动,会有树叶飘动。那也许树叶飘动这件事情,是很难被预测的,对 machine 来说它在某一个 state 什么都不做,看着树叶飘动,然后,发现这个树叶飘动是没有办法预测的,接下来它就会一直站在那边,看树叶飘动。所以说,光是有好奇心是不够的,还要让它知道说,什么事情是真正重要的。
|
||||
|
||||

|
||||
|
||||
怎么让 machine 知道说什么事情是真正重要的?你要加上另外一个 module,我们要 learn 一个`feature extractor`,黄色的格子代表 feature extractor,它是 input 一个 state,然后 output 一个feature vector 来代表这个state,那我们期待这个 feature extractor 可以把那种没有意义的画面,state 里面没有意义的东西把它过滤掉,比如说风吹草动、白云的飘动、树叶的飘动这种没有意义的东西直接把它过滤掉,
|
||||
|
||||
假设这个 feature extractor 真的可以把无关紧要的东西过滤掉以后,network 1 实际上做的事情是,给它一个 actor,给它一个state $s_t$ 的feature representation,让它预测 state $s_{t+1}$ 的feature representation。接下来我们再看说,这个预测的结果跟真正的 state $s_{t+1}$ 的 feature representation 像不像,越不像,reward 就越大。怎么 learn 这个 feature extractor 呢?让这个feature extractor 可以把无关紧要的事情滤掉呢?这边的 learn 法就是 learn 另外一个network 2。这个 network 2 是吃 $\phi(s_t)$、$\phi(s_{t+1})$ 这两个 vector 当做 input,然后接下来它要predict action a 是什么,然后它希望呢这个 action a 跟真正的 action a 越接近越好。这个network 2 会 output 一个 action,它output 说,从 state $s_t$ 跳到 state $s_{t+1}$,要采取哪一个 action 才能够做到,那希望这个 action 跟真正的 action 越接近越好。加上这个 network 2 的好处就是因为要用 $\phi(s_t)$、$\phi(s_{t+1})$ 预测action。所以,今天我们抽出来的 feature 跟预测action 这件事情是有关的。所以风吹草动等与 machine 要采取的 action 无关的东西就会被滤掉,就不会被放在抽出来的 vector representation 里面。
|
||||
|
||||
|
||||
|
||||
## Curriculum Learning
|
||||
|
||||
|
||||

|
||||
接下来讲 `curriculum learning` ,curriculum learning 不是 reinforcement learning 所独有的概念。其实在很多 machine learning,尤其是 deep learning 里面,你都会用到 curriculum learning 的概念,举例来说,curriculum learning 的意思是说,你为机器的学习做规划,你给他喂 training data 的时候,是有顺序的,通常都是由简单到难。就好比说,假设你今天要交一个小朋友作微积分,他做错就打他一巴掌,这样他永远都不会做对,太难了。你要先教他九九乘法,然后才教他微积分。所以curriculum learning 的意思就是在教机器的时候,从简单的题目教到难的题目。就算不是reinforcement learning,一般在 train deep network 的时候,你有时候也会这么做。举例来说,在train RNN 的时候,已经有很多的文献都 report 说,你给机器先看短的 sequence,再慢慢给它长的sequence,通常可以学得比较好。那用在reinforcement learning 里面,你就是要帮机器规划一下它的课程,从最简单的到最难的。 举例来说,在 Facebook 玩 VizDoom 的 agent 里面,Facebook 玩 VizDoom 的 agent 蛮强的。他们在参加这个 VizDoom 的比赛,机器的 VizDoom 比赛是得第一名的,他们是有为机器规划课程的。先从课程 0 一直上到课程 7。在这个课程里面,怪物的速度跟血量是不一样的。所以,在越进阶的课程里面,怪物的速度越快,然后他的血量越多。在 paper 里面也有讲说,如果直接上课程 7,machine 是学不起来的。你就是要从课程 0 一路玩上去,这样machine 才学得起来。
|
||||
|
||||
再举个例子,把蓝色的板子穿过柱子,怎么让机器一直从简单学到难呢?
|
||||
|
||||
如第一张图所示,也许一开始机器初始的时候,它的板子就已经在柱子上了。这个时候,机器要做的事情只有把蓝色的板子压下去,就结束了。这比较简单,它应该很快就学的会。它只有往上跟往下这两个选择嘛,往下就得到reward,就结束了,他也不知道学的是什么。
|
||||
|
||||
如第二张图所示,这边就是把板子挪高一点,挪高一点,所以它有时候会很笨的往上拉,然后把板子拿出来了。如果它压板子学得会的话,拿板子也比较有机会学得会。假设它现在学的到说,只要板子接近柱子,它就可以把这个板子压下去的话。接下来,你再让它学更 general 的case。
|
||||
|
||||
如第三张图所示,一开始,让板子离柱子远一点。然后,板子放到柱子上面的时候,它就会知道把板子压下去,这个就是Curriculum Learning 的概念。当然 curriculum learning 有点ad hoc(特别),就是需要人去为机器设计它的课程。
|
||||
|
||||

|
||||
|
||||
有一个比较 general 的方法叫做 `Reverse Curriculum Generation`。你可以用一个比较通用的方法来帮机器设计课程,这个比较通用的方法是怎么样呢?假设你现在一开始有一个state $s_g$,这是你的gold state,也就是最后最理想的结果。如果拿刚才那个板子和柱子的实验作为例子的话,就把板子放到柱子里面,这样子叫做 gold state。你就已经完成了,或者你让机器去抓东西,你训练一个机器手臂抓东西,抓到东西以后叫做 gold state。接下来你根据你的 gold state 去找其他的 state,这些其他的 state 跟 gold state 是比较接近的。举例来说,如果是让机器抓东西的例子里面,你的机器手臂可能还没有抓到东西。假设这些跟 gold state 很近的 state 叫做 $s_1$。你的机械手臂还没有抓到东西,但它离 gold state 很近,那这个叫做$s_1$。至于什么叫做近,这是 case dependent,你要根据你的 task 来 design 说怎么从 $s_g$ sample 出 $s_1$。如果是机械手臂的例子,可能就比较好想。其他例子可能就比较难想。接下来呢,你再从这些 $s_1$ 开始做互动,看它能不能够达到gold state $s_g$,那每一个state,你跟环境做互动的时候,你都会得到一个reward R。
|
||||
|
||||

|
||||
|
||||
接下来,我们把 reward 特别极端的 case 去掉,reward 特别极端的 case 的意思就是说那些 case 太简单,或者是太难了。如果 reward 很大,代表说这个case 太简单了,就不用学了,因为机器已经会了,它可以得到很大的reward。如果 reward 太小,代表这个case 太难了,依照机器现在的能力这个课程太难了,它学不会,所以就不要学这个,所以只找一些 reward 适中的 case。那当然什么叫做适中,这个就是你要调的参数,找一些 reward 适中的 case。接下来,再根据这些 reward 适中的case 去 sample 出更多的 state。就假设你一开始,你机械手臂在这边,可以抓的到以后。接下来,就再离远一点,看看能不能够抓得到,又抓的到以后,再离远一点,看看能不能抓得到。这是一个有用的方法,它叫做`Reverse Curriculum learning`。刚才讲的是Curriculum learning,就是你要为机器规划它学习的顺序。因为它说从 gold state 去反推,就是说你原来的目标是长这个样子,我们从我们的目标去反推,所以这个叫做 reverse。
|
||||
|
||||
## Hierarchical RL
|
||||
|
||||

|
||||
|
||||
那最后一个 tip 叫做 `Hierarchical Reinforcement learning`,阶层式的 reinforcement learning。
|
||||
所谓阶层式的Reinforcement learning 是说,我们有好几个 agent。然后,有一些agent 负责比较high level 的东西,它负责订目标,然后它订完目标以后,再分配给其他的 agent,去把它执行完成。这样的想法其实也是很合理的。因为我们知道说,我们人在一生之中,并不是时时刻刻都在做决定。举例来说,假设你想要写一篇paper,你会说就我先想个梗这样子,然后想完梗以后,你还要跑个实验。跑完实验以后,你还要写。写完以后呢,你还要这个去发表。每一个动作下面又还会再细分,比如说怎么跑实验呢?你要先 collect data,collect 完data 以后,你要再 label,你要弄一个network,然后又 train 不起来,要 train 很多次。然后重新 design network 架构好几次,最后才把network train 起来。
|
||||
|
||||
所以,我们要完成一个很大的 task 的时候,我们并不是从非常底层的那些 action 开始想起,我们其实是有个 plan。我们先想说,如果要完成这个最大的任务,那接下来要拆解成哪些小任务。每一个小任务要再怎么拆解成小小的任务。举例来说,叫你直接写一本书可能很困难,但叫你先把一本书拆成好几个章节,每个章节拆成好几段,每一段又拆成好几个句子,每一个句子又拆成好几个词汇,这样你可能就比较写得出来,这个就是阶层式的 Reinforcement learning 的概念。
|
||||
|
||||
这边是举一个例子,就是假设校长、教授和研究生通通都是 agent。那今天假设我们的reward 就是只要进入百大就可以得到 reward。假设进入百大的话,校长就要提出愿景告诉其他的agent 说,现在你要达到什么样的目标。那校长的愿景可能就是说教授每年都要发三篇期刊。然后接下来这些agent 都是有阶层式的,所以上面的 agent,他的动作就是提出愿景这样。那他把他的愿景传给下一层的agent,下一层的 agent 就把这个愿景吃下去。如果他下面还有其他人的话,它就会提出新的愿景。比如说,校长要教授发期刊,但其实教授自己也是不做实验的。所以,教授也只能够叫下面的研究生做实验。所以教授就提出愿景,就做出实验的规划,然后研究生才是真的去执行这个实验的人。然后,真的把实验做出来,最后大家就可以得到reward。那现在是这样子的,在 learn 的时候,其实每一个 agent 都会 learn。那他们的整体的目标就是要达到最后的reward。那前面的这些 agent,他提出来的 actions 就是愿景这样。你如果是玩游戏的话,他提出来的就是,我现在想要产生这样的游戏画面。但是,假设他提出来的愿景是下面的 agent 达不到的,那就会被讨厌。举例来说,教授对研究生都一直逼迫研究生做一些很困难的实验,研究生都做不出来的话,研究生就会跑掉,所以他就会得到一个penalty。所以如果今天下层的 agent 没有办法达到上层 agent 所提出来的 goal 的话,上层的 agent 就会被讨厌,它就会得到一个 negative reward。所以他要避免提出那些愿景是底下的agent 所做不到的。那每一个agent 都是把上层的 agent 所提出来的愿景当作输入,然后决定他自己要产生什么输出。
|
||||
|
||||
但是你知道说,就算你看到上面的的愿景说,叫你做这一件事情。你最后也不一定能做成这一件事情。假设本来教授目标是要写期刊,但是不知道怎么回事,他就要变成一个YouTuber。这个paper 里面的 solution,我觉得非常有趣。给大家做一个参考,这其实本来的目标是要写期刊,但却变成 YouTuber,那怎么办呢? 把原来的愿景改成变成 YouTuber 就行了,在paper 里面就是这么做的,为什么这么做呢? 因为虽然本来的愿景是要写期刊,但是后来变成YouTuber,难道这些动作都浪费了吗? 不是,这些动作是没有被浪费的。我们就假设说,本来的愿景其实就是要成为YouTuber,那你就知道成为 YouTuber 要怎做了。这个是阶层式 RL,是可以做得起来的 tip。
|
||||
|
||||

|
||||
|
||||
|
||||
上图是真实的例子。实际上呢,这里面就做了一些比较简单的游戏,这个是走迷宫,蓝色是 agent,蓝色的 agent 要走到黄色的目标。这边也是,这个单摆要碰到黄色的球。那愿景是什么呢?
|
||||
|
||||
在这个 task 里面,它只有两个 agent ,下层的一个 agent 负责决定说要怎么走,上层的 agent 就负责提出愿景。虽然,实际上你可以用很多层,但 paper 就用了两层。
|
||||
|
||||
走迷宫的例子是说粉红色的这个点代表的就是愿景。上层这个 agent,它告诉蓝色的这个 agent 说,你现在的第一个目标是先走到这个地方,蓝色的 agent 走到以后,再说你的新的目标是走到这里。蓝色的 agent 再走到以后,新的目标在这里。接下来又跑到这边,最后希望蓝色的 agent 就可以走到黄色的这个位置。
|
||||
|
||||
单摆的例子也一样,就是粉红色的这个点代表的是上层的 agent 所提出来的愿景,所以这个agent 先摆到这边,接下来,新的愿景又跑到这边,所以它又摆到这里。然后,新的愿景又跑到上面。然后又摆到上面,最后就走到黄色的位置了。这个就是 hierarchical 的 Reinforcement Learning。
|
||||
BIN
docs/chapter7/img/7.1.png
Normal file
|
After Width: | Height: | Size: 505 KiB |
BIN
docs/chapter7/img/7.10.png
Normal file
|
After Width: | Height: | Size: 569 KiB |
BIN
docs/chapter7/img/7.2.png
Normal file
|
After Width: | Height: | Size: 863 KiB |
BIN
docs/chapter7/img/7.3.png
Normal file
|
After Width: | Height: | Size: 289 KiB |
BIN
docs/chapter7/img/7.4.png
Normal file
|
After Width: | Height: | Size: 225 KiB |
BIN
docs/chapter7/img/7.5.png
Normal file
|
After Width: | Height: | Size: 330 KiB |
BIN
docs/chapter7/img/7.6.png
Normal file
|
After Width: | Height: | Size: 514 KiB |
BIN
docs/chapter7/img/7.7.png
Normal file
|
After Width: | Height: | Size: 148 KiB |
BIN
docs/chapter7/img/7.8.png
Normal file
|
After Width: | Height: | Size: 184 KiB |
BIN
docs/chapter7/img/7.9.png
Normal file
|
After Width: | Height: | Size: 535 KiB |
99
docs/chapter8/chapter8.md
Normal file
@@ -0,0 +1,99 @@
|
||||
[toc]
|
||||
# Imitation Learning
|
||||

|
||||
Imitation learning 讨论的问题是,假设我们连 reward 都没有,那要怎么办呢?Imitation learning 又叫做 `learning by demonstration` 或者叫做 `apprenticeship learning`。在 Imitation learning 里面,你有一些 expert 的 demonstration,那 machine 也可以跟环境互动,但它没有办法从环境里面得到任何的 reward,它只能看着 expert 的 demonstration 来学习什么是好,什么是不好。其实,多数的情况,我们都没有办法真的从环境里面得到非常明确的reward。举例来说,如果是棋类游戏或者是电玩,你有非常明确的 reward。但是其实多数的任务,都是没有 reward 的。以 chat-bot 为例,机器跟人聊天,聊得怎么样算是好,聊得怎么样算是不好,你无法给出明确的 reward。所以很多 task 是根本就没有办法给出 reward 的。
|
||||
|
||||
虽然没有办法订出reward,但是收集 expert 的 demonstration 是可以做到的。举例来说,在自驾车里面,虽然你没有办法订出自驾车的 reward,但你可以收集很多人类开车的纪录。在 chat-bot 里面,你可能没有办法定义什么叫做好的对话,什么叫做不好的对话。但是收集很多人的对话当作范例,这一件事情也是可行的。所以,imitation learning 的使用性非常高。假设你今天有一个状况是,你不知道该怎么定义 reward。但是你可以收集到 expert 的 demonstration,你可以收集到一些范例的话,你可以收集到一些很厉害的 agent。比如说人跟环境实际上的互动的话,那你就可以考虑imitation learning 这个技术。那在 imitation learning 里面,我们介绍两个方法。第一个叫做 `Behavior Cloning`,第二个叫做 `Inverse Reinforcement Learning` 或者又叫做 `Inverse Optimal Control`。
|
||||
|
||||
## Behavior Cloning
|
||||

|
||||
|
||||
其实 `Behavior Cloning` 跟 supervised learning 是一模一样的。我们以自驾车为例,你可以收集到人开自驾车的所有资料,比如说可以通过行车记录器进行收集。看到这样子的 observation 的时候,人会决定向前。机器就采取跟人一样的行为,也向前,就结束了,这个就叫做 Behavior Cloning。Expert 做什么,机器就做一模一样的事,怎么让机器学会跟 expert 一模一样的行为呢?就把它当作一个 supervised learning 的问题,你去收集很多行车纪录器。然后再收集人在那个情境下会采取什么样的行为。你知道说人在 state $s_1$ 会采取action $a_1$,人在state $s_2$ 会采取action $a_2$。人在state, $s_3$ 会采取action $a_3$。接下来,你就learn 一个 network。这个 network 就是你的 actor,他input $s_i$ 的时候,你就希望他的output 是$a_i$,就这样结束了。它就是一个的 supervised learning 的problem。
|
||||
|
||||

|
||||
|
||||
Behavior Cloning 虽然非常简单,但它的问题是如果你只收集expert 的资料,你可能看过的 observation 会是非常 limited。举例来说,假设你要 learn 一部自驾车,自驾车就是要过这个弯道。如果是 expert 的话,他就是把车顺着这个红线就开过去了。但假设你的 agent 很笨,他今天开着开着,就开到撞墙了,他永远不知道撞墙这种状况要怎么处理,为什么?因为 training data 里面从来没有撞过墙,所以他根本就不知道撞墙这一种 case 要怎么处理。或是打电玩,电玩也是一样,让人去玩 Mario,那 expert 可能非常强,他从来不会跳不上水管,所以机器根本不知道跳不上水管时要怎么处理。人从来不会跳不上水管,但是机器如果跳不上水管时,就不知道要怎么处理。所以光是做Behavior Cloning 是不够的。只观察 expert 的行为是不够的,需要一个招数,这个招数叫作`Dataset Aggregation`。
|
||||
|
||||

|
||||
|
||||
我们会希望收集更多样性的 data,而不是只收集 expert 所看到的 observation。我们会希望能够收集 expert 在各种极端的情况下,他会采取什么样的行为。以自驾车为例的话,假设一开始,你的actor 叫作 $\pi_1$,你让 $\pi_1$去开这个车。但车上坐了一个 expert。这个 expert 会不断地告诉machine 说,如果在这个情境里面,我会怎么样开。所以 $\pi_1$ 自己开自己的,但是expert 会不断地表示他的想法。比如说,在这个时候,expert 可能说那就往前走。这个时候,expert 可能就会说往右转。但 $\pi_1$ 是不管 expert 的指令的,所以他会继续去撞墙。虽然 expert 说往右转,但是不管他怎么下指令都是没有用的。$\pi_1$ 会自己做自己的事情,因为我们要做的记录的是说,今天expert 在 $\pi_1$ 看到这种observation 的情况下,他会做什么样的反应。这个方法显然是有一些问题的,因为每次你开一次自驾车都会牺牲一个人。那你用这个方法,你牺牲一个expert 以后,你就会得到说,人类在这样子的 state 下,在快要撞墙的时候,会采取什么样的反应。再把这个data 拿去train 新的 $\pi_2$。这个process 就反复继续下去,这个方法就叫做`Dataset Aggregation`。
|
||||
|
||||
|
||||
|
||||

|
||||
|
||||
Behavior Cloning 还有一个 issue 是说,机器会完全 copy expert 的行为,不管 expert 的行为是否有道理,就算没有道理,没有什么用的,这是expert 本身的习惯,机器也会硬把它记下来。如果机器确实可以记住所有 expert 的行为,那也许还好,为什么呢?因为如果 expert 这么做,有些行为是多余的。但是没有问题,假设机器的行为可以完全仿造 expert 行为,那也就算了,那他是跟 expert 一样得好,只是做一些多余的事。但问题就是它是一个 machine,它是一个 network,network 的capacity 是有限的。就算给 network training data,它在training data 上得到的正确率往往也不是100%,他有些事情是学不起来的。这个时候,什么该学,什么不该学就变得很重要。
|
||||
|
||||
举例来说,在学习中文的时候,你的老师,他有语音,他也有行为,他也有知识,但其实只有语音部分是重要的,知识的部分是不重要的。也许 machine 只能够学一件事,也许他就只学到了语音,那没有问题。如果他只学到了手势,这样子就有问题了。所以让机器学习什么东西是需要 copy,什么东西是不需要 copy,这件事情是重要的。而单纯的 Behavior Cloning 就没有把这件事情学进来,因为机器只是复制 expert 所有的行为而已,它不知道哪些行为是重要,是对接下来有影响的,哪些行为是不重要的,是对接下来是没有影响的。
|
||||
|
||||
|
||||

|
||||
|
||||
Behavior Cloning 还有什么样的问题呢?在做 Behavior Cloning 的时候,training data 跟 testing data 是 mismatch 的。我们可以用 Dataset Aggregation 的方法来缓解这个问题。这个问题是,在 training 跟 testing 的时候,data distribution 其实是不一样的。因为在 reinforcement learning 里面,action 会影响到接下来所看到的 state。我们是先有 state $s_1$,然后采取 action $a_1$,action $a_1$ 其实会决定接下来你看到什么样的 state $s_2$。所以在 reinforcement learning 里面有一个很重要的特征,就是你采取了 action 会影响你接下来所看到的 state。如果做了Behavior Cloning 的话,我们只能观察到 expert 的一堆 state 跟 action 的pair。然后我们希望可以 learn 一个 $\pi^*$,我们希望 $\pi^*$ 跟 $\hat{\pi}$ 越接近越好。如果 $\pi^*$ 可以跟 $\hat{\pi}$ 一模一样的话,你 training 的时候看到的 state 跟 testing 的时候所看到的 state 会是一样的。因为虽然 action 会影响我们看到的 state,但假设两个 policy 一模一样, 在同一个 state 都会采取同样的 action,那你接下来所看到的 state 都会是一样的。但问题就是你很难让你的 learn 出来的 policy 跟expert 的 policy 一模一样。Expert 可是一个人,network 要跟人一模一样,感觉很难吧。
|
||||
|
||||
如果你的 $\pi^*$ 跟 $\hat{\pi}$ 有一点误差。这个误差在一般 supervised learning problem 里面,每一个 example 都是 independent 的,也许还好。但对 reinforcement learning 的 problem 来说,你可能在某个地方就是失之毫厘,差之千里。可能在某个地方,也许 machine 没有办法完全复制 expert 的行为,它只复制了一点点,差了一点点,也许最后得到的结果就会差很多这样。所以 Behavior Cloning 并不能够完全解决 Imatation learning 这件事情。所以就有另外一个比较好的做法叫做 `Inverse Reinforcement Learning`。
|
||||
|
||||
|
||||
## Inverse RL
|
||||
|
||||

|
||||
为什么叫 Inverse Reinforcement Learning,因为原来的 Reinforcement Learning 里面,有一个环境和一个 reward function。根据环境和 reward function,通过 Reinforcement Learning 这个技术,你会找到一个 actor,你会 learn 出一个optimal actor。但 Inverse Reinforcement Learning 刚好是相反的,你没有 reward function,你只有一堆 expert 的 demonstration。但你还是有环境的。IRL 的做法是说假设我们现在有一堆 expert 的demonstration,我们用 $\hat{\tau}$ 来代表expert 的demonstration。如果是在玩电玩的话,每一个 $\tau$ 就是一个很会玩电玩的人玩一场游戏的纪录,如果是自驾车的话,就是人开自驾车的纪录。这一边就是 expert 的 demonstration,每一个 $\tau$ 是一个 trajectory。
|
||||
|
||||
|
||||
把所有 expert demonstration 收集起来,然后,使用Inverse Reinforcement Learning 这个技术。使用 Inverse Reinforcement Learning 技术的时候,机器是可以跟环境互动的。但他得不到reward。他的 reward 必须要从 expert 那边推出来,有了环境和 expert demonstration 以后,去反推出 reward function 长什么样子。之前 reinforcement learning 是由 reward function 反推出什么样的 action、actor 是最好的。Inverse Reinforcement Learning 是反过来,我们有expert 的demonstration,我们相信他是不错的,我就反推说,expert 是因为什么样的 reward function 才会采取这些行为。你有了reward function 以后,接下来,你就可以套用一般的 reinforcement learning 的方法去找出 optimal actor。所以 Inverse Reinforcement Learning 是先找出 reward function,找出 reward function 以后,再去用 Reinforcement Learning 找出 optimal actor。
|
||||
|
||||
把这个 reward function learn 出来,相较于原来的 Reinforcement Learning 有什么样好处。一个可能的好处是也许 reward function 是比较简单的。也许,虽然这个 expert 的行为非常复杂,但也许简单的 reward function 就可以导致非常复杂的行为。一个例子就是也许人类本身的 reward function 就只有活着这样,每多活一秒,你就加一分。但人类有非常复杂的行为,但是这些复杂的行为,都只是围绕着要从这个 reward function 里面得到分数而已。有时候很简单的 reward function 也许可以推导出非常复杂的行为。
|
||||
|
||||

|
||||
|
||||
Inverse Reinforcement Learning 实际上是怎么做的呢?首先,我们有一个 expert $\hat{\pi}$,这个 expert 去跟环境互动,给我们很多 $\hat{\tau_1}$ 到 $\hat{\tau_n}$。如果是玩游戏的话,就让某一个电玩高手,去玩 n 场游戏。把 n 场游戏的 state 跟 action 的 sequence 都记录下来。接下来,你有一个actor $\pi$,一开始actor 很烂,这个 actor 也去跟环境互动。他也去玩了n 场游戏,他也有 n 场游戏的纪录。接下来,我们要反推出 reward function。怎么推出 reward function 呢?**原则就是 expert 永远是最棒的,是先射箭,再画靶的概念。**
|
||||
|
||||
Expert 去玩一玩游戏,得到这一些游戏的纪录,你的 actor 也去玩一玩游戏,得到这些游戏的纪录。接下来,你要定一个 reward function,这个 reward function 的原则就是 expert 得到的分数要比 actor 得到的分数高,先射箭,再画靶。所以我们就 learn 出一个 reward function。你就找出一个 reward function。这个 reward function 会使 expert 所得到的 reward 大过于 actor 所得到的reward。你有了新的 reward function 以后,就可以套用一般 Reinforcement Learning 的方法去learn 一个actor,这个actor 会针对 reward function 去 maximize 他的reward。他也会采取一大堆的action。但是,今天这个 actor 虽然可以 maximize 这个 reward function,采取一大堆的行为,得到一大堆游戏的纪录。
|
||||
|
||||
但接下来,我们就改 reward function。这个 actor 就会很生气,它已经可以在这个reward function 得到高分。但是他得到高分以后,我们就改 reward function,仍然让 expert 可以得到比 actor 更高的分数。这个就是 `Inverse Reinforcement learning`。有了新的 reward function 以后,根据这个新的 reward function,你就可以得到新的 actor,新的 actor 再去跟环境做一下互动,他跟环境做互动以后, 你又会重新定义你的 reward function,让 expert 得到的 reward 比 actor 大。
|
||||
|
||||
怎么让 expert 得到的 reward 大过 actor 呢?其实你在 learning 的时候,你可以很简单地做一件事就是,reward function 也许就是 neural network。这个 neural network 就是吃一个 $\tau$,output 就是应该要给这个 $\tau$ 多少的分数。或者说,你假设觉得 input 整个$\tau$ 太难了。因为$\tau$ 是 s 和 a 的一个很强的sequence。也许他就是 input 一个 s 和 a 的 pair,然后 output 一个real number。把整个 sequence,整个$\tau$ 会得到的 real number 都加起来就得到 $R(\tau)$。在training 的时候,对于 $\left\{\hat{\tau}_{1}, \hat{\tau}_{2}, \cdots, \hat{\tau}_{N}\right\}$,我们希望它 output 的 R 越大越好。对于 $\left\{\tau_{1}, \tau_{2}, \cdots, \tau_{N}\right\}$,我们就希望它 R 的值越小越好。
|
||||
|
||||
什么叫做一个最好的 reward function。最后你 learn 出来的 reward function 应该就是 expert 和 actor 在这个 reward function 都会得到一样高的分数。最终你的 reward function 没有办法分辨出谁应该会得到比较高的分数。
|
||||
|
||||
通常在 train 的时候,你会 iterative 的去做。那今天的状况是这样,最早的 Inverse Reinforcement Learning 对 reward function 有些限制,他是假设 reward function 是 linear 的。如果reward function 是 linear 的话,你可以 prove 这个algorithm 会 converge。但是如果不是 linear 的,你就没有办法 prove 说它会 converge。你有没有觉得这个东西,看起来还挺熟悉呢?其实你只要把他换个名字,说 actor 就是 generator,然后说 reward function 就是discriminator,它就是GAN。所以它会不会收敛这个问题就等于是问说 GAN 会不会收敛。如果你已经实现过,你会知道不一定会收敛。但除非你对 R 下一个非常严格的限制,如果你的 R 是一个 general 的network 的话,你就会有很大的麻烦。
|
||||
|
||||
|
||||

|
||||
|
||||
那怎么说它像是一个GAN,我们来跟GAN 比较一下。GAN 里面,你有一堆很好的图。然后你有一个generator,一开始他根本不知道要产生什么样的图,他就乱画。然后你有一个discriminator,discriminator 的工作就是给画的图打分,expert 画的图就是高分,generator 画的图就是低分。你有discriminator 以后,generator 会想办法去骗过 discriminator。Generator 会希望 discriminator 也会给它画的图高分。整个 process 跟 Inverse Reinforcement Learning 是一模一样的。
|
||||
|
||||
* 画的图就是 expert 的 demonstration。generator 就是actor,generator 画很多图,actor 会去跟环境互动,产生很多 trajectory。这些 trajectory 跟环境互动的记录,游戏的纪录其实就是等于 GAN 里面的这些图。
|
||||
* 然后你 learn 一个reward function。Reward function 就是 discriminator。Rewards function 要给 expert 的 demonstration 高分,给 actor 互动的结果低分。
|
||||
* 接下来,actor 会想办法,从这个已经 learn 出来的 reward function 里面得到高分,然后 iterative 地去循环。跟GAN 其实是一模一样的,我们只是换个说法来而已。
|
||||
|
||||
|
||||
|
||||

|
||||
|
||||
IRL 有很多的application,举例来说,可以用开来自驾车。然后,有人用这个技术来学开自驾车的不同风格,每个人在开车的时候,其实你会有不同风格。举例来说,能不能够压到线,能不能够倒退,要不要遵守交通规则等等。每个人的风格是不同的,然后用 Inverse Reinforcement Learning 可以让自驾车学会各种不同的开车风格。
|
||||
|
||||

|
||||
|
||||
上图是文献上真实的例子,在这个例子里面, Inverse Reinforcement Learning 有一个有趣的地方,通常你不需要太多的 training data,因为 training data 往往都是个位数。因为 Inverse Reinforcement Learning 只是一种 demonstration,只是一种范例,实际上机器可以去跟环境互动非常多次。所以在 Inverse Reinforcement Learning 的文献, 往往会看到说只用几笔 data 就训练出一些有趣的结果。
|
||||
|
||||
比如说,在这个例子里面是要让自驾车学会在停车场里面停。这边的demonstration 是这样,蓝色是终点,自驾车要开到蓝色终点停车。给机器只看一行的四个 demonstration,然后让他去学怎么样开车,最后他就可以学出,在红色的终点位置,如果他要停车的话,他会这样开。今天给机器看不同的demonstration,最后他学出来开车的风格就会不太一样。举例来说,上图第二行是不守规矩的开车方式,因为他会开到道路之外,这边,他会穿过其他的车,然后从这边开进去。所以机器就会学到说,不一定要走在道路上,他可以走非道路的地方。上图第三行是倒退来停车,机器也会学会说,他可以倒退,
|
||||
|
||||

|
||||
|
||||
这种技术也可以拿来训练机器人。你可以让机器人,做一些你想要他做的动作,过去如果你要训练机器人,做你想要他做的动作,其实是比较麻烦的。怎么麻烦呢?过去如果你要操控机器的手臂,你要花很多力气去写 program 才让机器做一件很简单的事看。假设你有 Imitation Learning 的技术,你可以让人做一下示范,然后机器就跟着人的示范来进行学习,比如学会摆盘子,拉着机器人的手去摆盘子,机器自己动。让机器学会倒水,人只教他20 次,杯子每次放的位置不太一样。用这种方法来教机械手臂。
|
||||
|
||||

|
||||
|
||||
其实还有很多相关的研究,举例来说,你在教机械手臂的时候,要注意就是也许机器看到的视野跟人看到的视野是不太一样的。在刚才那个例子里面,人跟机器的动作是一样的。但是在未来的世界里面,也许机器是看着人的行为学的。刚才是人拉着,假设你要让机器学会打高尔夫球,在刚才的例子里面就是人拉着机器人手臂去打高尔夫球,但是在未来有没有可能机器就是看着人打高尔夫球,他自己就学会打高尔夫球了呢?但这个时候,要注意的事情是机器的视野跟他真正去采取这个行为的时候的视野是不一样的。机器必须了解到当他是第三人的视角的时候,看到另外一个人在打高尔夫球,跟他实际上自己去打高尔夫球的时候,看到的视野显然是不一样的。但他怎么把他是第三人的时间所观察到的经验把它 generalize 到他是第一人称视角的时候所采取的行为,这就需要用到`Third Person Imitation Learning`的技术。
|
||||
|
||||

|
||||
|
||||
这个怎么做呢?它的技术其实也是不只是用到 Imitation Learning,他用到了 `Domain-Adversarial Training`。我们在讲 Domain-Adversarial Training 的时候,我们有讲说这也是一个GAN 的技术。那我们希望今天有一个 extractor,有两个不同 domain 的image,通过 feature extractor 以后,没有办法分辨出他来自哪一个 domain。其实第一人称视角和第三人称视角,Imitation Learning 用的技术其实也是一样的,希望 learn 一个 Feature Extractor,机器在第三人称的时候跟他在第一人称的时候看到的视野其实是一样的,就是把最重要的东西抽出来就好了。
|
||||
|
||||

|
||||
|
||||
在讲 Sequence GAN 的时候,我们有讲过 Sentence Generation 跟 Chat-bot。那其实 Sentence Generation 或 Chat-bot 也可以想成是 Imitation Learning。机器在 imitate 人写的句子,你在写句子的时候,你写下去的每一个 word 都想成是一个 action,所有的 word 合起来就是一个 episode。举例来说, sentence generation 里面,你会给机器看很多人类写的文字。你要让机器学会写诗,那你就要给他看唐诗三百首。人类写的文字其实就是 expert 的 demonstration。每一个词汇其实就是一个 action。今天,你让机器做Sentence Generation 的时候其实就是在 imitate expert 的trajectory。Chat-bot 也是一样,在Chat-bot 里面你会收集到很多人互动对话的纪录,那些就是 expert 的 demonstration。
|
||||
|
||||
如果我们今天单纯用 maximum likelihood 这个技术来 maximize 会得到 likelihood,这个其实就是behavior cloning。我们今天做 behavior cloning 就是看到一个 state,接下来预测我们会得到什么样的 action。看到一个state,然后有一个 ground truth 告诉机器说什么样的 action 是最好的。在做 likelihood 的时候也是一样,given sentence 已经产生的部分。接下来 machine 要 predict 说接下来要写哪一个word 才是最好的。所以,其实 maximum likelihood 在做Sequence generation 的时候,它对应到 Imitation Learning 里面就是 behavior cloning。只有 maximum likelihood 是不够的,我们想要用 Sequence GAN,其实 Sequence GAN 就是对应到 Inverse Reinforcement Learning,Inverse Reinforcement Learning 就是一种 GAN 的技术。你把 Inverse Reinforcement Learning 的技术放在 Sentence generation,放到 Chat-bot 里面,其实就是 Sequence GAN 跟它的种种的变形。
|
||||
|
||||
BIN
docs/chapter8/img/8.1.png
Normal file
|
After Width: | Height: | Size: 912 KiB |
BIN
docs/chapter8/img/8.10.png
Normal file
|
After Width: | Height: | Size: 669 KiB |