update codes
@@ -12,10 +12,10 @@ Environment:
|
|||||||
import torch.optim as optim
|
import torch.optim as optim
|
||||||
from A2C.model import ActorCritic
|
from A2C.model import ActorCritic
|
||||||
class A2C:
|
class A2C:
|
||||||
def __init__(self,state_dim,action_dim,cfg) -> None:
|
def __init__(self,n_states,n_actions,cfg) -> None:
|
||||||
self.gamma = cfg.gamma
|
self.gamma = cfg.gamma
|
||||||
self.device = cfg.device
|
self.device = cfg.device
|
||||||
self.model = ActorCritic(state_dim, action_dim, cfg.hidden_size).to(self.device)
|
self.model = ActorCritic(n_states, n_actions, cfg.hidden_size).to(self.device)
|
||||||
self.optimizer = optim.Adam(self.model.parameters())
|
self.optimizer = optim.Adam(self.model.parameters())
|
||||||
|
|
||||||
def compute_returns(self,next_value, rewards, masks):
|
def compute_returns(self,next_value, rewards, masks):
|
||||||
|
|||||||
@@ -13,19 +13,19 @@ import torch.nn as nn
|
|||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from torch.distributions import Categorical
|
from torch.distributions import Categorical
|
||||||
class ActorCritic(nn.Module):
|
class ActorCritic(nn.Module):
|
||||||
def __init__(self, num_inputs, num_outputs, hidden_size, std=0.0):
|
def __init__(self, n_states, n_actions, hidden_dim):
|
||||||
super(ActorCritic, self).__init__()
|
super(ActorCritic, self).__init__()
|
||||||
|
|
||||||
self.critic = nn.Sequential(
|
self.critic = nn.Sequential(
|
||||||
nn.Linear(num_inputs, hidden_size),
|
nn.Linear(n_states, hidden_dim),
|
||||||
nn.ReLU(),
|
nn.ReLU(),
|
||||||
nn.Linear(hidden_size, 1)
|
nn.Linear(hidden_dim, 1)
|
||||||
)
|
)
|
||||||
|
|
||||||
self.actor = nn.Sequential(
|
self.actor = nn.Sequential(
|
||||||
nn.Linear(num_inputs, hidden_size),
|
nn.Linear(n_states, hidden_dim),
|
||||||
nn.ReLU(),
|
nn.ReLU(),
|
||||||
nn.Linear(hidden_size, num_outputs),
|
nn.Linear(hidden_dim, n_actions),
|
||||||
nn.Softmax(dim=1),
|
nn.Softmax(dim=1),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|||||||
265
codes/A2C/task0_train.ipynb
Normal file
@@ -1,8 +1,7 @@
|
|||||||
import sys,os
|
import sys,os
|
||||||
curr_path = os.path.dirname(__file__)
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||||
parent_path = os.path.dirname(curr_path)
|
parent_path = os.path.dirname(curr_path) # 父路径
|
||||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
sys.path.append(parent_path) # 添加路径到系统路径sys.path
|
||||||
|
|
||||||
|
|
||||||
import gym
|
import gym
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -17,17 +16,28 @@ from common.plot import plot_rewards
|
|||||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||||
class A2CConfig:
|
class A2CConfig:
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
self.algo='A2C'
|
self.algo='A2C' # 算法名称
|
||||||
self.env= 'CartPole-v0'
|
self.env_name= 'CartPole-v0' # 环境名称
|
||||||
self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # path to save results
|
self.n_envs = 8 # 异步的环境数目
|
||||||
self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # path to save models
|
self.gamma = 0.99 # 强化学习中的折扣因子
|
||||||
self.n_envs = 8
|
self.hidden_dim = 256
|
||||||
self.gamma = 0.99
|
|
||||||
self.hidden_size = 256
|
|
||||||
self.lr = 1e-3 # learning rate
|
self.lr = 1e-3 # learning rate
|
||||||
self.max_frames = 30000
|
self.max_frames = 30000
|
||||||
self.n_steps = 5
|
self.n_steps = 5
|
||||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
class PlotConfig:
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.algo = "DQN" # 算法名称
|
||||||
|
self.env_name = 'CartPole-v0' # 环境名称
|
||||||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
|
|
||||||
|
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/results/' # 保存结果的路径
|
||||||
|
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/models/' # 保存模型的路径
|
||||||
|
self.save = True # 是否保存图片
|
||||||
|
|
||||||
|
|
||||||
def make_envs(env_name):
|
def make_envs(env_name):
|
||||||
def _thunk():
|
def _thunk():
|
||||||
env = gym.make(env_name)
|
env = gym.make(env_name)
|
||||||
@@ -57,11 +67,11 @@ def compute_returns(next_value, rewards, masks, gamma=0.99):
|
|||||||
|
|
||||||
|
|
||||||
def train(cfg,envs):
|
def train(cfg,envs):
|
||||||
env = gym.make(cfg.env) # a single env
|
env = gym.make(cfg.env_name) # a single env
|
||||||
env.seed(10)
|
env.seed(10)
|
||||||
state_dim = envs.observation_space.shape[0]
|
state_dim = envs.observation_space.shape[0]
|
||||||
action_dim = envs.action_space.n
|
action_dim = envs.action_space.n
|
||||||
model = ActorCritic(state_dim, action_dim, cfg.hidden_size).to(cfg.device)
|
model = ActorCritic(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
|
||||||
optimizer = optim.Adam(model.parameters())
|
optimizer = optim.Adam(model.parameters())
|
||||||
frame_idx = 0
|
frame_idx = 0
|
||||||
test_rewards = []
|
test_rewards = []
|
||||||
@@ -112,9 +122,11 @@ def train(cfg,envs):
|
|||||||
return test_rewards, test_ma_rewards
|
return test_rewards, test_ma_rewards
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
cfg = A2CConfig()
|
cfg = A2CConfig()
|
||||||
envs = [make_envs(cfg.env) for i in range(cfg.n_envs)]
|
plot_cfg = PlotConfig()
|
||||||
envs = SubprocVecEnv(envs) # 8 env
|
envs = [make_envs(cfg.env_name) for i in range(cfg.n_envs)]
|
||||||
|
envs = SubprocVecEnv(envs)
|
||||||
|
# 训练
|
||||||
rewards,ma_rewards = train(cfg,envs)
|
rewards,ma_rewards = train(cfg,envs)
|
||||||
make_dir(cfg.result_path,cfg.model_path)
|
make_dir(plot_cfg.result_path,plot_cfg.model_path)
|
||||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path) # 保存结果
|
||||||
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
|
||||||
|
|||||||
|
Before Width: | Height: | Size: 61 KiB |
|
Before Width: | Height: | Size: 67 KiB |
@@ -12,7 +12,7 @@ LastEditTime: 2021-09-16 01:31:33
|
|||||||
import sys,os
|
import sys,os
|
||||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||||
parent_path = os.path.dirname(curr_path) # 父路径
|
parent_path = os.path.dirname(curr_path) # 父路径
|
||||||
sys.path.append(parent_path) # 添加父路径到系统路径sys.path
|
sys.path.append(parent_path) # 添加路径到系统路径sys.path
|
||||||
|
|
||||||
import datetime
|
import datetime
|
||||||
import gym
|
import gym
|
||||||
@@ -21,44 +21,51 @@ import torch
|
|||||||
from DDPG.env import NormalizedActions, OUNoise
|
from DDPG.env import NormalizedActions, OUNoise
|
||||||
from DDPG.agent import DDPG
|
from DDPG.agent import DDPG
|
||||||
from common.utils import save_results,make_dir
|
from common.utils import save_results,make_dir
|
||||||
from common.plot import plot_rewards, plot_rewards_cn
|
from common.plot import plot_rewards
|
||||||
|
|
||||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||||
|
|
||||||
class DDPGConfig:
|
class DDPGConfig:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.algo = 'DDPG' # 算法名称
|
self.algo = 'DDPG' # 算法名称
|
||||||
self.env = 'Pendulum-v0' # 环境名称
|
self.env_name = 'Pendulum-v0' # 环境名称
|
||||||
self.result_path = curr_path+"/outputs/" + self.env + \
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
'/'+curr_time+'/results/' # 保存结果的路径
|
|
||||||
self.model_path = curr_path+"/outputs/" + self.env + \
|
|
||||||
'/'+curr_time+'/models/' # 保存模型的路径
|
|
||||||
self.train_eps = 300 # 训练的回合数
|
self.train_eps = 300 # 训练的回合数
|
||||||
self.eval_eps = 50 # 测试的回合数
|
self.eval_eps = 50 # 测试的回合数
|
||||||
self.gamma = 0.99 # 折扣因子
|
self.gamma = 0.99 # 折扣因子
|
||||||
self.critic_lr = 1e-3 # 评论家网络的学习率
|
self.critic_lr = 1e-3 # 评论家网络的学习率
|
||||||
self.actor_lr = 1e-4 # 演员网络的学习率
|
self.actor_lr = 1e-4 # 演员网络的学习率
|
||||||
self.memory_capacity = 8000
|
self.memory_capacity = 8000 # 经验回放的容量
|
||||||
self.batch_size = 128
|
self.batch_size = 128 # mini-batch SGD中的批量大小
|
||||||
self.target_update = 2
|
self.target_update = 2 # 目标网络的更新频率
|
||||||
self.hidden_dim = 256
|
self.hidden_dim = 256 # 网络隐藏层维度
|
||||||
self.soft_tau = 1e-2 # 软更新参数
|
self.soft_tau = 1e-2 # 软更新参数
|
||||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
||||||
|
class PlotConfig:
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.algo = "DQN" # 算法名称
|
||||||
|
self.env_name = 'CartPole-v0' # 环境名称
|
||||||
|
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/results/' # 保存结果的路径
|
||||||
|
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/models/' # 保存模型的路径
|
||||||
|
self.save = True # 是否保存图片
|
||||||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
|
|
||||||
def env_agent_config(cfg,seed=1):
|
def env_agent_config(cfg,seed=1):
|
||||||
env = NormalizedActions(gym.make(cfg.env))
|
env = NormalizedActions(gym.make(cfg.env_name)) # 装饰action噪声
|
||||||
env.seed(seed) # 随机种子
|
env.seed(seed) # 随机种子
|
||||||
state_dim = env.observation_space.shape[0]
|
n_states = env.observation_space.shape[0]
|
||||||
action_dim = env.action_space.shape[0]
|
n_actions = env.action_space.shape[0]
|
||||||
agent = DDPG(state_dim,action_dim,cfg)
|
agent = DDPG(n_states,n_actions,cfg)
|
||||||
return env,agent
|
return env,agent
|
||||||
|
|
||||||
def train(cfg, env, agent):
|
def train(cfg, env, agent):
|
||||||
print('开始训练!')
|
print('开始训练!')
|
||||||
print(f'环境:{cfg.env},算法:{cfg.algo},设备:{cfg.device}')
|
print(f'环境:{cfg.env_name},算法:{cfg.algo},设备:{cfg.device}')
|
||||||
ou_noise = OUNoise(env.action_space) # 动作噪声
|
ou_noise = OUNoise(env.action_space) # 动作噪声
|
||||||
rewards = [] # 记录奖励
|
rewards = [] # 记录所有回合的奖励
|
||||||
ma_rewards = [] # 记录滑动平均奖励
|
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||||
for i_ep in range(cfg.train_eps):
|
for i_ep in range(cfg.train_eps):
|
||||||
state = env.reset()
|
state = env.reset()
|
||||||
ou_noise.reset()
|
ou_noise.reset()
|
||||||
@@ -86,9 +93,9 @@ def train(cfg, env, agent):
|
|||||||
|
|
||||||
def eval(cfg, env, agent):
|
def eval(cfg, env, agent):
|
||||||
print('开始测试!')
|
print('开始测试!')
|
||||||
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||||
rewards = [] # 记录奖励
|
rewards = [] # 记录所有回合的奖励
|
||||||
ma_rewards = [] # 记录滑动平均奖励
|
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||||
for i_ep in range(cfg.eval_eps):
|
for i_ep in range(cfg.eval_eps):
|
||||||
state = env.reset()
|
state = env.reset()
|
||||||
done = False
|
done = False
|
||||||
@@ -112,17 +119,18 @@ def eval(cfg, env, agent):
|
|||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
cfg = DDPGConfig()
|
cfg = DDPGConfig()
|
||||||
|
plot_cfg = PlotConfig()
|
||||||
# 训练
|
# 训练
|
||||||
env,agent = env_agent_config(cfg,seed=1)
|
env,agent = env_agent_config(cfg,seed=1)
|
||||||
rewards, ma_rewards = train(cfg, env, agent)
|
rewards, ma_rewards = train(cfg, env, agent)
|
||||||
make_dir(cfg.result_path, cfg.model_path)
|
make_dir(plot_cfg.result_path, plot_cfg.model_path)
|
||||||
agent.save(path=cfg.model_path)
|
agent.save(path=plot_cfg.model_path)
|
||||||
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
|
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path)
|
||||||
plot_rewards_cn(rewards, ma_rewards, tag="train", env = cfg.env, algo=cfg.algo, path=cfg.result_path)
|
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train")
|
||||||
# 测试
|
# 测试
|
||||||
env,agent = env_agent_config(cfg,seed=10)
|
env,agent = env_agent_config(cfg,seed=10)
|
||||||
agent.load(path=cfg.model_path)
|
agent.load(path=plot_cfg.model_path)
|
||||||
rewards,ma_rewards = eval(cfg,env,agent)
|
rewards,ma_rewards = eval(plot_cfg,env,agent)
|
||||||
save_results(rewards,ma_rewards,tag = 'eval',path = cfg.result_path)
|
save_results(rewards,ma_rewards,tag = 'eval',path = cfg.result_path)
|
||||||
plot_rewards_cn(rewards,ma_rewards,tag = "eval",env = cfg.env,algo = cfg.algo,path=cfg.result_path)
|
plot_rewards(rewards,ma_rewards,plot_cfg,tag = "eval")
|
||||||
|
|
||||||
|
|||||||
|
Before Width: | Height: | Size: 36 KiB |
|
Before Width: | Height: | Size: 27 KiB |
@@ -1,3 +0,0 @@
|
|||||||
|
|
||||||
本目录下汇总了基础的DQN及其变种或升级,如下
|
|
||||||
|
|
||||||
|
Before Width: | Height: | Size: 36 KiB After Width: | Height: | Size: 36 KiB |
|
Before Width: | Height: | Size: 76 KiB After Width: | Height: | Size: 76 KiB |
|
Before Width: | Height: | Size: 58 KiB After Width: | Height: | Size: 58 KiB |
|
Before Width: | Height: | Size: 37 KiB After Width: | Height: | Size: 37 KiB |
|
Before Width: | Height: | Size: 325 KiB After Width: | Height: | Size: 325 KiB |
|
Before Width: | Height: | Size: 27 KiB After Width: | Height: | Size: 27 KiB |
|
Before Width: | Height: | Size: 40 KiB After Width: | Height: | Size: 40 KiB |
423
codes/DQN/task0_train.ipynb
Normal file
@@ -12,7 +12,7 @@ LastEditTime: 2021-09-15 15:34:13
|
|||||||
import sys,os
|
import sys,os
|
||||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||||
parent_path = os.path.dirname(curr_path) # 父路径
|
parent_path = os.path.dirname(curr_path) # 父路径
|
||||||
sys.path.append(parent_path) # 添加父路径到系统路径sys.path
|
sys.path.append(parent_path) # 添加路径到系统路径
|
||||||
|
|
||||||
import gym
|
import gym
|
||||||
import torch
|
import torch
|
||||||
@@ -26,9 +26,11 @@ curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时
|
|||||||
class DQNConfig:
|
class DQNConfig:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.algo = "DQN" # 算法名称
|
self.algo = "DQN" # 算法名称
|
||||||
self.env = 'CartPole-v0' # 环境名称
|
self.env_name = 'CartPole-v0' # 环境名称
|
||||||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
self.train_eps = 200 # 训练的回合数
|
self.train_eps = 200 # 训练的回合数
|
||||||
self.eval_eps = 30 # 测试的回合数
|
self.eval_eps = 30 # 测试的回合数
|
||||||
|
# 超参数
|
||||||
self.gamma = 0.95 # 强化学习中的折扣因子
|
self.gamma = 0.95 # 强化学习中的折扣因子
|
||||||
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
|
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
|
||||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||||
@@ -37,23 +39,22 @@ class DQNConfig:
|
|||||||
self.memory_capacity = 100000 # 经验回放的容量
|
self.memory_capacity = 100000 # 经验回放的容量
|
||||||
self.batch_size = 64 # mini-batch SGD中的批量大小
|
self.batch_size = 64 # mini-batch SGD中的批量大小
|
||||||
self.target_update = 4 # 目标网络的更新频率
|
self.target_update = 4 # 目标网络的更新频率
|
||||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
|
||||||
self.hidden_dim = 256 # 网络隐藏层
|
self.hidden_dim = 256 # 网络隐藏层
|
||||||
class PlotConfig:
|
class PlotConfig:
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
self.algo = "DQN" # 算法名称
|
self.algo = "DQN" # 算法名称
|
||||||
self.env = 'CartPole-v0' # 环境名称
|
self.env_name = 'CartPole-v0' # 环境名称
|
||||||
self.result_path = curr_path+"/outputs/" + self.env + \
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
|
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
'/'+curr_time+'/results/' # 保存结果的路径
|
'/'+curr_time+'/results/' # 保存结果的路径
|
||||||
self.model_path = curr_path+"/outputs/" + self.env + \
|
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
'/'+curr_time+'/models/' # 保存模型的路径
|
'/'+curr_time+'/models/' # 保存模型的路径
|
||||||
self.save = True # 是否保存图片
|
self.save = True # 是否保存图片
|
||||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
|
||||||
|
|
||||||
def env_agent_config(cfg,seed=1):
|
def env_agent_config(cfg,seed=1):
|
||||||
''' 创建环境和智能体
|
''' 创建环境和智能体
|
||||||
'''
|
'''
|
||||||
env = gym.make(cfg.env) # 创建环境
|
env = gym.make(cfg.env_name) # 创建环境
|
||||||
env.seed(seed) # 设置随机种子
|
env.seed(seed) # 设置随机种子
|
||||||
n_states = env.observation_space.shape[0] # 状态数
|
n_states = env.observation_space.shape[0] # 状态数
|
||||||
n_actions = env.action_space.n # 动作数
|
n_actions = env.action_space.n # 动作数
|
||||||
@@ -64,7 +65,7 @@ def train(cfg, env, agent):
|
|||||||
''' 训练
|
''' 训练
|
||||||
'''
|
'''
|
||||||
print('开始训练!')
|
print('开始训练!')
|
||||||
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||||
rewards = [] # 记录所有回合的奖励
|
rewards = [] # 记录所有回合的奖励
|
||||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||||
for i_ep in range(cfg.train_eps):
|
for i_ep in range(cfg.train_eps):
|
||||||
@@ -93,7 +94,7 @@ def train(cfg, env, agent):
|
|||||||
|
|
||||||
def eval(cfg,env,agent):
|
def eval(cfg,env,agent):
|
||||||
print('开始测试!')
|
print('开始测试!')
|
||||||
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||||
# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0
|
# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0
|
||||||
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
|
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
|
||||||
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
|
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
|
||||||
|
Before Width: | Height: | Size: 17 KiB After Width: | Height: | Size: 17 KiB |
|
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 24 KiB |
|
Before Width: | Height: | Size: 105 KiB After Width: | Height: | Size: 105 KiB |
|
Before Width: | Height: | Size: 74 KiB After Width: | Height: | Size: 74 KiB |
|
Before Width: | Height: | Size: 185 KiB After Width: | Height: | Size: 185 KiB |
|
Before Width: | Height: | Size: 75 KiB After Width: | Height: | Size: 75 KiB |
|
Before Width: | Height: | Size: 47 KiB After Width: | Height: | Size: 47 KiB |
|
Before Width: | Height: | Size: 57 KiB After Width: | Height: | Size: 57 KiB |
|
Before Width: | Height: | Size: 121 KiB After Width: | Height: | Size: 121 KiB |
|
Before Width: | Height: | Size: 112 KiB After Width: | Height: | Size: 112 KiB |
|
Before Width: | Height: | Size: 311 KiB After Width: | Height: | Size: 311 KiB |
|
Before Width: | Height: | Size: 73 KiB After Width: | Height: | Size: 73 KiB |
|
Before Width: | Height: | Size: 21 KiB After Width: | Height: | Size: 21 KiB |
|
Before Width: | Height: | Size: 62 KiB After Width: | Height: | Size: 62 KiB |
@@ -29,13 +29,16 @@ class PPO:
|
|||||||
self.memory = PPOMemory(cfg.batch_size)
|
self.memory = PPOMemory(cfg.batch_size)
|
||||||
self.loss = 0
|
self.loss = 0
|
||||||
|
|
||||||
def choose_action(self, observation):
|
def choose_action(self, state,continuous=False):
|
||||||
state = torch.tensor([observation], dtype=torch.float).to(self.device)
|
state = torch.tensor([state], dtype=torch.float).to(self.device)
|
||||||
dist = self.actor(state)
|
dist = self.actor(state)
|
||||||
value = self.critic(state)
|
value = self.critic(state)
|
||||||
action = dist.sample()
|
action = dist.sample()
|
||||||
probs = torch.squeeze(dist.log_prob(action)).item()
|
probs = torch.squeeze(dist.log_prob(action)).item()
|
||||||
action = torch.squeeze(action).item()
|
if continuous:
|
||||||
|
action = torch.tanh(action)
|
||||||
|
else:
|
||||||
|
action = torch.squeeze(action).item()
|
||||||
value = torch.squeeze(value).item()
|
value = torch.squeeze(value).item()
|
||||||
return action, probs, value
|
return action, probs, value
|
||||||
|
|
||||||
|
|||||||
|
After Width: | Height: | Size: 28 KiB |
|
After Width: | Height: | Size: 78 KiB |
|
Before Width: | Height: | Size: 27 KiB |
|
Before Width: | Height: | Size: 58 KiB |
|
Before Width: | Height: | Size: 32 KiB |
|
Before Width: | Height: | Size: 33 KiB |
@@ -10,14 +10,13 @@ Discription:
|
|||||||
Environment:
|
Environment:
|
||||||
'''
|
'''
|
||||||
import sys,os
|
import sys,os
|
||||||
curr_path = os.path.dirname(__file__)
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||||
parent_path=os.path.dirname(curr_path)
|
parent_path = os.path.dirname(curr_path) # 父路径
|
||||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
sys.path.append(parent_path) # 添加路径到系统路径
|
||||||
|
|
||||||
import gym
|
import gym
|
||||||
import torch
|
import torch
|
||||||
import datetime
|
import datetime
|
||||||
import tqdm
|
|
||||||
from PPO.agent import PPO
|
from PPO.agent import PPO
|
||||||
from common.plot import plot_rewards
|
from common.plot import plot_rewards
|
||||||
from common.utils import save_results,make_dir
|
from common.utils import save_results,make_dir
|
||||||
@@ -26,12 +25,12 @@ curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current t
|
|||||||
|
|
||||||
class PPOConfig:
|
class PPOConfig:
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
self.env = 'CartPole-v0'
|
self.algo = "DQN" # 算法名称
|
||||||
self.algo = 'PPO'
|
self.env_name = 'CartPole-v0' # 环境名称
|
||||||
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
|
self.continuous = False # 环境是否为连续动作
|
||||||
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
self.train_eps = 200 # max training episodes
|
self.train_eps = 200 # 训练的回合数
|
||||||
self.eval_eps = 50
|
self.eval_eps = 20 # 测试的回合数
|
||||||
self.batch_size = 5
|
self.batch_size = 5
|
||||||
self.gamma=0.99
|
self.gamma=0.99
|
||||||
self.n_epochs = 4
|
self.n_epochs = 4
|
||||||
@@ -41,10 +40,20 @@ class PPOConfig:
|
|||||||
self.policy_clip=0.2
|
self.policy_clip=0.2
|
||||||
self.hidden_dim = 256
|
self.hidden_dim = 256
|
||||||
self.update_fre = 20 # frequency of agent update
|
self.update_fre = 20 # frequency of agent update
|
||||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu
|
|
||||||
|
class PlotConfig:
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.algo = "DQN" # 算法名称
|
||||||
|
self.env_name = 'CartPole-v0' # 环境名称
|
||||||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
|
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/results/' # 保存结果的路径
|
||||||
|
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/models/' # 保存模型的路径
|
||||||
|
self.save = True # 是否保存图片
|
||||||
|
|
||||||
def env_agent_config(cfg,seed=1):
|
def env_agent_config(cfg,seed=1):
|
||||||
env = gym.make(cfg.env)
|
env = gym.make(cfg.env_name)
|
||||||
env.seed(seed)
|
env.seed(seed)
|
||||||
state_dim = env.observation_space.shape[0]
|
state_dim = env.observation_space.shape[0]
|
||||||
action_dim = env.action_space.n
|
action_dim = env.action_space.n
|
||||||
@@ -53,44 +62,44 @@ def env_agent_config(cfg,seed=1):
|
|||||||
|
|
||||||
def train(cfg,env,agent):
|
def train(cfg,env,agent):
|
||||||
print('开始训练!')
|
print('开始训练!')
|
||||||
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
|
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||||
rewards= []
|
rewards = [] # 记录所有回合的奖励
|
||||||
ma_rewards = [] # moving average rewards
|
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||||
running_steps = 0
|
steps = 0
|
||||||
for i_ep in range(cfg.train_eps):
|
for i_ep in range(cfg.train_eps):
|
||||||
state = env.reset()
|
state = env.reset()
|
||||||
done = False
|
done = False
|
||||||
ep_reward = 0
|
ep_reward = 0
|
||||||
while not done:
|
while not done:
|
||||||
action, prob, val = agent.choose_action(state)
|
action, prob, val = agent.choose_action(state,continuous=cfg.continuous)
|
||||||
state_, reward, done, _ = env.step(action)
|
state_, reward, done, _ = env.step(action)
|
||||||
running_steps += 1
|
steps += 1
|
||||||
ep_reward += reward
|
ep_reward += reward
|
||||||
agent.memory.push(state, action, prob, val, reward, done)
|
agent.memory.push(state, action, prob, val, reward, done)
|
||||||
if running_steps % cfg.update_fre == 0:
|
if steps % cfg.update_fre == 0:
|
||||||
agent.update()
|
agent.update()
|
||||||
state = state_
|
state = state_
|
||||||
rewards.append(ep_reward)
|
rewards.append(ep_reward)
|
||||||
if ma_rewards:
|
if ma_rewards:
|
||||||
ma_rewards.append(
|
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
|
||||||
else:
|
else:
|
||||||
ma_rewards.append(ep_reward)
|
ma_rewards.append(ep_reward)
|
||||||
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}")
|
if (i_ep+1)%10 == 0:
|
||||||
print('Complete training!')
|
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}")
|
||||||
|
print('完成训练!')
|
||||||
return rewards,ma_rewards
|
return rewards,ma_rewards
|
||||||
|
|
||||||
def eval(cfg,env,agent):
|
def eval(cfg,env,agent):
|
||||||
print('Start to eval !')
|
print('开始测试!')
|
||||||
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
|
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||||
rewards= []
|
rewards = [] # 记录所有回合的奖励
|
||||||
ma_rewards = [] # moving average rewards
|
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||||
for i_ep in range(cfg.eval_eps):
|
for i_ep in range(cfg.eval_eps):
|
||||||
state = env.reset()
|
state = env.reset()
|
||||||
done = False
|
done = False
|
||||||
ep_reward = 0
|
ep_reward = 0
|
||||||
while not done:
|
while not done:
|
||||||
action, prob, val = agent.choose_action(state)
|
action, prob, val = agent.choose_action(state,cfg.continuous)
|
||||||
state_, reward, done, _ = env.step(action)
|
state_, reward, done, _ = env.step(action)
|
||||||
ep_reward += reward
|
ep_reward += reward
|
||||||
state = state_
|
state = state_
|
||||||
@@ -100,23 +109,23 @@ def eval(cfg,env,agent):
|
|||||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||||
else:
|
else:
|
||||||
ma_rewards.append(ep_reward)
|
ma_rewards.append(ep_reward)
|
||||||
print(f"Episode:{i_ep+1}/{cfg.eval_eps}, Reward:{ep_reward:.3f}")
|
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.eval_eps, ep_reward))
|
||||||
print('Complete evaling!')
|
print('完成训练!')
|
||||||
return rewards,ma_rewards
|
return rewards,ma_rewards
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
cfg = PPOConfig()
|
cfg = PPOConfig()
|
||||||
# train
|
plot_cfg = PlotConfig()
|
||||||
|
# 训练
|
||||||
env,agent = env_agent_config(cfg,seed=1)
|
env,agent = env_agent_config(cfg,seed=1)
|
||||||
rewards, ma_rewards = train(cfg, env, agent)
|
rewards, ma_rewards = train(cfg, env, agent)
|
||||||
make_dir(cfg.result_path, cfg.model_path)
|
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||||
agent.save(path=cfg.model_path)
|
agent.save(path=plot_cfg.model_path)
|
||||||
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
|
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path)
|
||||||
plot_rewards(rewards, ma_rewards, tag="train",
|
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train")
|
||||||
algo=cfg.algo, path=cfg.result_path)
|
# 测试
|
||||||
# eval
|
|
||||||
env,agent = env_agent_config(cfg,seed=10)
|
env,agent = env_agent_config(cfg,seed=10)
|
||||||
agent.load(path=cfg.model_path)
|
agent.load(path=plot_cfg.model_path)
|
||||||
rewards,ma_rewards = eval(cfg,env,agent)
|
rewards,ma_rewards = eval(cfg,env,agent)
|
||||||
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path)
|
||||||
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
plot_rewards(rewards,ma_rewards,plot_cfg,tag="eval")
|
||||||
|
|||||||
132
codes/PPO/task1_train.py
Normal file
@@ -0,0 +1,132 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# coding=utf-8
|
||||||
|
'''
|
||||||
|
Author: John
|
||||||
|
Email: johnjim0816@gmail.com
|
||||||
|
Date: 2021-03-22 16:18:10
|
||||||
|
LastEditor: John
|
||||||
|
LastEditTime: 2021-09-26 22:05:00
|
||||||
|
Discription:
|
||||||
|
Environment:
|
||||||
|
'''
|
||||||
|
import sys,os
|
||||||
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||||
|
parent_path = os.path.dirname(curr_path) # 父路径
|
||||||
|
sys.path.append(parent_path) # 添加路径到系统路径
|
||||||
|
|
||||||
|
import gym
|
||||||
|
import torch
|
||||||
|
import datetime
|
||||||
|
from PPO.agent import PPO
|
||||||
|
from common.plot import plot_rewards
|
||||||
|
from common.utils import save_results,make_dir
|
||||||
|
|
||||||
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||||
|
|
||||||
|
class PPOConfig:
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.algo = "PPO" # 算法名称
|
||||||
|
self.env_name = 'Pendulum-v1' # 环境名称
|
||||||
|
self.continuous = True # 环境是否为连续动作
|
||||||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
|
self.train_eps = 200 # 训练的回合数
|
||||||
|
self.eval_eps = 20 # 测试的回合数
|
||||||
|
self.batch_size = 5
|
||||||
|
self.gamma=0.99
|
||||||
|
self.n_epochs = 4
|
||||||
|
self.actor_lr = 0.0003
|
||||||
|
self.critic_lr = 0.0003
|
||||||
|
self.gae_lambda=0.95
|
||||||
|
self.policy_clip=0.2
|
||||||
|
self.hidden_dim = 256
|
||||||
|
self.update_fre = 20 # frequency of agent update
|
||||||
|
|
||||||
|
class PlotConfig:
|
||||||
|
def __init__(self) -> None:
|
||||||
|
self.algo = "PPO" # 算法名称
|
||||||
|
self.env_name = 'Pendulum-v1' # 环境名称
|
||||||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||||
|
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/results/' # 保存结果的路径
|
||||||
|
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||||||
|
'/'+curr_time+'/models/' # 保存模型的路径
|
||||||
|
self.save = True # 是否保存图片
|
||||||
|
|
||||||
|
def env_agent_config(cfg,seed=1):
|
||||||
|
env = gym.make(cfg.env_name)
|
||||||
|
env.seed(seed)
|
||||||
|
state_dim = env.observation_space.shape[0]
|
||||||
|
action_dim = env.action_space.shape[0]
|
||||||
|
agent = PPO(state_dim,action_dim,cfg)
|
||||||
|
return env,agent
|
||||||
|
|
||||||
|
def train(cfg,env,agent):
|
||||||
|
print('开始训练!')
|
||||||
|
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||||
|
rewards = [] # 记录所有回合的奖励
|
||||||
|
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||||
|
steps = 0
|
||||||
|
for i_ep in range(cfg.train_eps):
|
||||||
|
state = env.reset()
|
||||||
|
done = False
|
||||||
|
ep_reward = 0
|
||||||
|
while not done:
|
||||||
|
action, prob, val = agent.choose_action(state,continuous=cfg.continuous)
|
||||||
|
print(action)
|
||||||
|
state_, reward, done, _ = env.step(action)
|
||||||
|
steps += 1
|
||||||
|
ep_reward += reward
|
||||||
|
agent.memory.push(state, action, prob, val, reward, done)
|
||||||
|
if steps % cfg.update_fre == 0:
|
||||||
|
agent.update()
|
||||||
|
state = state_
|
||||||
|
rewards.append(ep_reward)
|
||||||
|
if ma_rewards:
|
||||||
|
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||||
|
else:
|
||||||
|
ma_rewards.append(ep_reward)
|
||||||
|
if (i_ep+1)%10 == 0:
|
||||||
|
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}")
|
||||||
|
print('完成训练!')
|
||||||
|
return rewards,ma_rewards
|
||||||
|
|
||||||
|
def eval(cfg,env,agent):
|
||||||
|
print('开始测试!')
|
||||||
|
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||||
|
rewards = [] # 记录所有回合的奖励
|
||||||
|
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||||
|
for i_ep in range(cfg.eval_eps):
|
||||||
|
state = env.reset()
|
||||||
|
done = False
|
||||||
|
ep_reward = 0
|
||||||
|
while not done:
|
||||||
|
action, prob, val = agent.choose_action(state,continuous=False)
|
||||||
|
state_, reward, done, _ = env.step(action)
|
||||||
|
ep_reward += reward
|
||||||
|
state = state_
|
||||||
|
rewards.append(ep_reward)
|
||||||
|
if ma_rewards:
|
||||||
|
ma_rewards.append(
|
||||||
|
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||||
|
else:
|
||||||
|
ma_rewards.append(ep_reward)
|
||||||
|
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.eval_eps, ep_reward))
|
||||||
|
print('完成训练!')
|
||||||
|
return rewards,ma_rewards
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
cfg = PPOConfig()
|
||||||
|
plot_cfg = PlotConfig()
|
||||||
|
# 训练
|
||||||
|
env,agent = env_agent_config(cfg,seed=1)
|
||||||
|
rewards, ma_rewards = train(cfg, env, agent)
|
||||||
|
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||||
|
agent.save(path=plot_cfg.model_path)
|
||||||
|
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path)
|
||||||
|
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train")
|
||||||
|
# 测试
|
||||||
|
env,agent = env_agent_config(cfg,seed=10)
|
||||||
|
agent.load(path=plot_cfg.model_path)
|
||||||
|
rewards,ma_rewards = eval(cfg,env,agent)
|
||||||
|
save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path)
|
||||||
|
plot_rewards(rewards,ma_rewards,plot_cfg,tag="eval")
|
||||||
@@ -1,30 +1,4 @@
|
|||||||
{
|
{
|
||||||
"metadata": {
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.7.10"
|
|
||||||
},
|
|
||||||
"orig_nbformat": 2,
|
|
||||||
"kernelspec": {
|
|
||||||
"name": "python3710jvsc74a57bd0fd81e6a9e450d5c245c1a0b5da0b03c89c450f614a13afa2acb1654375922756",
|
|
||||||
"display_name": "Python 3.7.10 64-bit ('mujoco': conda)"
|
|
||||||
},
|
|
||||||
"metadata": {
|
|
||||||
"interpreter": {
|
|
||||||
"hash": "fd81e6a9e450d5c245c1a0b5da0b03c89c450f614a13afa2acb1654375922756"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 2,
|
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
@@ -170,9 +144,29 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 7,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"ename": "DeprecatedEnv",
|
||||||
|
"evalue": "Env Pendulum-v0 not found (valid versions include ['Pendulum-v1'])",
|
||||||
|
"output_type": "error",
|
||||||
|
"traceback": [
|
||||||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||||
|
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
|
||||||
|
"\u001b[0;32m~/anaconda3/envs/py37/lib/python3.7/site-packages/gym/envs/registration.py\u001b[0m in \u001b[0;36mspec\u001b[0;34m(self, path)\u001b[0m\n\u001b[1;32m 157\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 158\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0menv_specs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mid\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 159\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||||
|
"\u001b[0;31mKeyError\u001b[0m: 'Pendulum-v0'",
|
||||||
|
"\nDuring handling of the above exception, another exception occurred:\n",
|
||||||
|
"\u001b[0;31mDeprecatedEnv\u001b[0m Traceback (most recent call last)",
|
||||||
|
"\u001b[0;32m<ipython-input-7-91b1038013e4>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# train\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0menv\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0magent\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv_agent_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0mrewards\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mma_rewards\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0magent\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mmake_dir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcfg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||||
|
"\u001b[0;32m<ipython-input-4-040773221550>\u001b[0m in \u001b[0;36menv_agent_config\u001b[0;34m(cfg, seed)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0menv_agent_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0menv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNormalizedActions\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgym\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Pendulum-v0\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0maction_dim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maction_space\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mstate_dim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobservation_space\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||||
|
"\u001b[0;32m~/anaconda3/envs/py37/lib/python3.7/site-packages/gym/envs/registration.py\u001b[0m in \u001b[0;36mmake\u001b[0;34m(id, **kwargs)\u001b[0m\n\u001b[1;32m 233\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 234\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 235\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mregistry\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 236\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 237\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||||
|
"\u001b[0;32m~/anaconda3/envs/py37/lib/python3.7/site-packages/gym/envs/registration.py\u001b[0m in \u001b[0;36mmake\u001b[0;34m(self, path, **kwargs)\u001b[0m\n\u001b[1;32m 126\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 127\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Making new env: %s\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 128\u001b[0;31m \u001b[0mspec\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mspec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 129\u001b[0m \u001b[0menv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mspec\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||||
|
"\u001b[0;32m~/anaconda3/envs/py37/lib/python3.7/site-packages/gym/envs/registration.py\u001b[0m in \u001b[0;36mspec\u001b[0;34m(self, path)\u001b[0m\n\u001b[1;32m 185\u001b[0m raise error.DeprecatedEnv(\n\u001b[1;32m 186\u001b[0m \"Env {} not found (valid versions include {})\".format(\n\u001b[0;32m--> 187\u001b[0;31m \u001b[0mid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmatching_envs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 188\u001b[0m )\n\u001b[1;32m 189\u001b[0m )\n",
|
||||||
|
"\u001b[0;31mDeprecatedEnv\u001b[0m: Env Pendulum-v0 not found (valid versions include ['Pendulum-v1'])"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"if __name__ == \"__main__\":\n",
|
"if __name__ == \"__main__\":\n",
|
||||||
" cfg=SACConfig()\n",
|
" cfg=SACConfig()\n",
|
||||||
@@ -193,5 +187,35 @@
|
|||||||
" plot_rewards(rewards,ma_rewards,tag=\"eval\",env=cfg.env,algo = cfg.algo,path=cfg.result_path)\n"
|
" plot_rewards(rewards,ma_rewards,tag=\"eval\",env=cfg.env,algo = cfg.algo,path=cfg.result_path)\n"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
]
|
],
|
||||||
|
"metadata": {
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "fe38df673a99c62a9fea33a7aceda74c9b65b12ee9d076c5851d98b692a4989a"
|
||||||
|
},
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3.7.10 64-bit ('mujoco': conda)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.7.10"
|
||||||
|
},
|
||||||
|
"metadata": {
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "fd81e6a9e450d5c245c1a0b5da0b03c89c450f614a13afa2acb1654375922756"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"orig_nbformat": 2
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
}
|
}
|
||||||