update codes
218
codes/DQN/README.md
Normal file
@@ -0,0 +1,218 @@
|
||||
# DQN
|
||||
|
||||
## 原理简介
|
||||
|
||||
DQN是Q-leanning算法的优化和延伸,Q-leaning中使用有限的Q表存储值的信息,而DQN中则用神经网络替代Q表存储信息,这样更适用于高维的情况,相关知识基础可参考[datawhale李宏毅笔记-Q学习](https://datawhalechina.github.io/easy-rl/#/chapter6/chapter6)。
|
||||
|
||||
论文方面主要可以参考两篇,一篇就是2013年谷歌DeepMind团队的[Playing Atari with Deep Reinforcement Learning](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf),一篇是也是他们团队后来在Nature杂志上发表的[Human-level control through deep reinforcement learning](https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf)。后者在算法层面增加target q-net,也可以叫做Nature DQN。
|
||||
|
||||
Nature DQN使用了两个Q网络,一个当前Q网络𝑄用来选择动作,更新模型参数,另一个目标Q网络𝑄′用于计算目标Q值。目标Q网络的网络参数不需要迭代更新,而是每隔一段时间从当前Q网络𝑄复制过来,即延时更新,这样可以减少目标Q值和当前的Q值相关性。
|
||||
|
||||
要注意的是,两个Q网络的结构是一模一样的。这样才可以复制网络参数。Nature DQN和[Playing Atari with Deep Reinforcement Learning](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf)相比,除了用一个新的相同结构的目标Q网络来计算目标Q值以外,其余部分基本是完全相同的。细节也可参考[强化学习(九)Deep Q-Learning进阶之Nature DQN](https://www.cnblogs.com/pinard/p/9756075.html)。
|
||||
|
||||
https://blog.csdn.net/JohnJim0/article/details/109557173)
|
||||
|
||||
## 伪代码
|
||||
|
||||
<img src="assets/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pvaG5KaW0w,size_16,color_FFFFFF,t_70.png" alt="img" style="zoom:50%;" />
|
||||
|
||||
## 代码实现
|
||||
|
||||
### RL接口
|
||||
|
||||
首先是强化学习训练的基本接口,即通用的训练模式:
|
||||
```python
|
||||
for i_episode in range(MAX_EPISODES):
|
||||
state = env.reset() # reset环境状态
|
||||
for i_step in range(MAX_STEPS):
|
||||
action = agent.choose_action(state) # 根据当前环境state选择action
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||||
agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory
|
||||
agent.update() # 每步更新网络
|
||||
state = next_state # 跳转到下一个状态
|
||||
if done:
|
||||
break
|
||||
```
|
||||
每个episode加一个MAX_STEPS,也可以使用while not done, 加这个max_steps有时是因为比如gym环境训练目标就是在200个step下达到200的reward,或者是当完成一个episode的步数较多时也可以设置,基本流程跟所有伪代码一致,如下:
|
||||
1. agent选择动作
|
||||
2. 环境根据agent的动作反馈出next_state和reward
|
||||
3. agent进行更新,如有memory就会将transition(包含state,reward,action等)存入memory中
|
||||
4. 跳转到下一个状态
|
||||
5. 如果done了,就跳出循环,进行下一个episode的训练。
|
||||
|
||||
想要实现完整的算法还需要创建Qnet,Replaybuffer等类
|
||||
|
||||
### 两个Q网络
|
||||
|
||||
上文讲了Nature DQN中有两个Q网络,一个是policy_net,一个是延时更新的target_net,两个网络的结构是一模一样的,如下(见```model.py```),注意DQN使用的Qnet就是全连接网络即FCH:
|
||||
```python
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class FCN(nn.Module):
|
||||
def __init__(self, state_dim=4, action_dim=18):
|
||||
""" 初始化q网络,为全连接网络
|
||||
state_dim: 输入的feature即环境的state数目
|
||||
action_dim: 输出的action总个数
|
||||
"""
|
||||
super(FCN, self).__init__()
|
||||
self.fc1 = nn.Linear(state_dim, 128) # 输入层
|
||||
self.fc2 = nn.Linear(128, 128) # 隐藏层
|
||||
self.fc3 = nn.Linear(128, action_dim) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
return self.fc3(x)
|
||||
```
|
||||
输入为state_dim,输出为action_dim,包含一个128维度的隐藏层,这里根据需要可增加隐藏层维度和数量,然后一般使用relu激活函数,这里跟深度学习的网路设置是一样的。
|
||||
|
||||
### Replay Buffer
|
||||
|
||||
然后就是Replay Memory了,其作用主要是是克服经验数据的相关性(correlated data)和非平稳分布(non-stationary distribution)问题,实现如下(见```memory.py```):
|
||||
|
||||
```python
|
||||
import random
|
||||
import numpy as np
|
||||
|
||||
class ReplayBuffer:
|
||||
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity
|
||||
self.buffer = []
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
batch = random.sample(self.buffer, batch_size)
|
||||
state, action, reward, next_state, done = zip(*batch)
|
||||
return state, action, reward, next_state, done
|
||||
|
||||
def __len__(self):
|
||||
return len(self.buffer)
|
||||
```
|
||||
|
||||
参数capacity表示buffer的容量,主要包括push和sample两个步骤,push是将transitions放到memory中,sample是从memory随机抽取一些transition。
|
||||
|
||||
### Agent类
|
||||
|
||||
在```agent.py```中我们定义强化学习算法类,包括```choose_action```(选择动作,使用e-greedy策略时会多一个```predict```函数,下面会将到)和```update```(更新)等函数。
|
||||
|
||||
在类中建立两个网络,以及optimizer和memory,
|
||||
|
||||
```python
|
||||
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # copy params from policy net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity)
|
||||
```
|
||||
然后是选择action:
|
||||
|
||||
```python
|
||||
def choose_action(self, state):
|
||||
'''选择动作
|
||||
'''
|
||||
self.frame_idx += 1
|
||||
if random.random() > self.epsilon(self.frame_idx):
|
||||
action = self.predict(state)
|
||||
else:
|
||||
action = random.randrange(self.action_dim)
|
||||
return action
|
||||
```
|
||||
|
||||
这里使用e-greedy策略,即设置一个参数epsilon,如果生成的随机数大于epsilon,就根据网络预测的选择action,否则还是随机选择action,这个epsilon是会逐渐减小的,可以使用线性或者指数减小的方式,但不会减小到零,这样在训练稳定时还能保持一定的探索,这部分可以学习探索与利用(exploration and exploition)相关知识。
|
||||
|
||||
上面讲到的预测函数其实就是根据state选取q值最大的action,如下:
|
||||
|
||||
```python
|
||||
def predict(self,state):
|
||||
with torch.no_grad():
|
||||
state = torch.tensor([state], device=self.device, dtype=torch.float32)
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item()
|
||||
```
|
||||
|
||||
然后是更新函数了:
|
||||
|
||||
```python
|
||||
def update(self):
|
||||
|
||||
if len(self.memory) < self.batch_size:
|
||||
return
|
||||
# 从memory中随机采样transition
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
|
||||
self.batch_size)
|
||||
'''转为张量
|
||||
例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]])'''
|
||||
state_batch = torch.tensor(
|
||||
state_batch, device=self.device, dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(
|
||||
1) # 例如tensor([[1],...,[0]])
|
||||
reward_batch = torch.tensor(
|
||||
reward_batch, device=self.device, dtype=torch.float) # tensor([1., 1.,...,1])
|
||||
next_state_batch = torch.tensor(
|
||||
next_state_batch, device=self.device, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(
|
||||
done_batch), device=self.device)
|
||||
|
||||
'''计算当前(s_t,a)对应的Q(s_t, a)'''
|
||||
'''torch.gather:对于a=torch.Tensor([[1,2],[3,4]]),那么a.gather(1,torch.Tensor([[0],[1]]))=torch.Tensor([[1],[3]])'''
|
||||
q_values = self.policy_net(state_batch).gather(
|
||||
dim=1, index=action_batch) # 等价于self.forward
|
||||
# 计算所有next states的V(s_{t+1}),即通过target_net中选取reward最大的对应states
|
||||
next_q_values = self.target_net(next_state_batch).max(
|
||||
1)[0].detach() # 比如tensor([ 0.0060, -0.0171,...,])
|
||||
# 计算 expected_q_value
|
||||
# 对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward
|
||||
expected_q_values = reward_batch + \
|
||||
self.gamma * next_q_values * (1-done_batch)
|
||||
# self.loss = F.smooth_l1_loss(q_values,expected_q_values.unsqueeze(1)) # 计算 Huber loss
|
||||
loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算 均方误差loss
|
||||
# 优化模型
|
||||
self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step
|
||||
# loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分
|
||||
loss.backward()
|
||||
# for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||
# param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step() # 更新模型
|
||||
```
|
||||
|
||||
更新遵循伪代码的以下部分:
|
||||
|
||||
<img src="assets/image-20210507162813393.png" alt="image-20210507162813393" style="zoom:50%;" />
|
||||
|
||||
首先从replay buffer中选取一个batch的数据,计算loss,然后进行minibatch SGD。
|
||||
|
||||
然后是保存与加载模型的部分,如下:
|
||||
|
||||
```python
|
||||
def save(self, path):
|
||||
torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth')
|
||||
def load(self, path):
|
||||
self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth'))
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
param.data.copy_(target_param.data)
|
||||
```
|
||||
|
||||
|
||||
|
||||
### 实验结果
|
||||
|
||||
训练结果如下:
|
||||
|
||||
<img src="assets/train_rewards_curve.png" alt="train_rewards_curve" style="zoom: 67%;" />
|
||||
|
||||
<img src="assets/eval_rewards_curve.png" alt="eval_rewards_curve" style="zoom:67%;" />
|
||||
|
||||
## 参考
|
||||
|
||||
[with torch.no_grad()](https://www.jianshu.com/p/1cea017f5d11)
|
||||
|
||||
84
codes/DQN/agent.py
Normal file
@@ -0,0 +1,84 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:50:49
|
||||
@LastEditor: John
|
||||
LastEditTime: 2021-09-15 13:35:36
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
'''off-policy
|
||||
'''
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import random
|
||||
import math
|
||||
import numpy as np
|
||||
from common.memory import ReplayBuffer
|
||||
from common.model import MLP
|
||||
class DQN:
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
|
||||
self.n_actions = n_actions # 总的动作个数
|
||||
self.device = cfg.device # 设备,cpu或gpu等
|
||||
self.gamma = cfg.gamma # 奖励的折扣因子
|
||||
# e-greedy策略相关参数
|
||||
self.frame_idx = 0 # 用于epsilon的衰减计数
|
||||
self.epsilon = lambda frame_idx: cfg.epsilon_end + \
|
||||
(cfg.epsilon_start - cfg.epsilon_end) * \
|
||||
math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity) # 经验回放
|
||||
|
||||
def choose_action(self, state):
|
||||
''' 选择动作
|
||||
'''
|
||||
self.frame_idx += 1
|
||||
if random.random() > self.epsilon(self.frame_idx):
|
||||
with torch.no_grad():
|
||||
state = torch.tensor([state], device=self.device, dtype=torch.float32)
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # 选择Q值最大的动作
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略
|
||||
return
|
||||
# 从经验回放中(replay memory)中随机采样一个批量的转移(transition)
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
|
||||
self.batch_size)
|
||||
# 转为张量
|
||||
state_batch = torch.tensor(state_batch, device=self.device, dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1)
|
||||
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float)
|
||||
next_state_batch = torch.tensor(next_state_batch, device=self.device, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(done_batch), device=self.device)
|
||||
q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch) # 计算当前状态(s_t,a)对应的Q(s_t, a)
|
||||
next_q_values = self.target_net(next_state_batch).max(1)[0].detach() # 计算下一时刻的状态(s_t_,a)对应的Q值
|
||||
# 计算期望的Q值,对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward
|
||||
expected_q_values = reward_batch + self.gamma * next_q_values * (1-done_batch)
|
||||
loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算均方根损失
|
||||
# 优化更新模型
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step()
|
||||
|
||||
def save(self, path):
|
||||
torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth')
|
||||
|
||||
def load(self, path):
|
||||
self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth'))
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
param.data.copy_(target_param.data)
|
||||
BIN
codes/DQN/assets/eval_rewards_curve.png
Normal file
|
After Width: | Height: | Size: 36 KiB |
BIN
codes/DQN/assets/image-20210507162813393.png
Normal file
|
After Width: | Height: | Size: 76 KiB |
BIN
codes/DQN/assets/rewards_curve_train.png
Normal file
|
After Width: | Height: | Size: 58 KiB |
BIN
codes/DQN/assets/train_rewards_curve.png
Normal file
|
After Width: | Height: | Size: 37 KiB |
|
After Width: | Height: | Size: 325 KiB |
|
After Width: | Height: | Size: 27 KiB |
|
After Width: | Height: | Size: 40 KiB |
423
codes/DQN/task0_train.ipynb
Normal file
137
codes/DQN/task0_train.py
Normal file
@@ -0,0 +1,137 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:48:57
|
||||
@LastEditor: John
|
||||
LastEditTime: 2021-09-15 15:34:13
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加路径到系统路径
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
|
||||
from common.utils import save_results, make_dir
|
||||
from common.plot import plot_rewards
|
||||
from DQN.agent import DQN
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
class DQNConfig:
|
||||
def __init__(self):
|
||||
self.algo = "DQN" # 算法名称
|
||||
self.env_name = 'CartPole-v0' # 环境名称
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.train_eps = 200 # 训练的回合数
|
||||
self.eval_eps = 30 # 测试的回合数
|
||||
# 超参数
|
||||
self.gamma = 0.95 # 强化学习中的折扣因子
|
||||
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
|
||||
self.lr = 0.0001 # 学习率
|
||||
self.memory_capacity = 100000 # 经验回放的容量
|
||||
self.batch_size = 64 # mini-batch SGD中的批量大小
|
||||
self.target_update = 4 # 目标网络的更新频率
|
||||
self.hidden_dim = 256 # 网络隐藏层
|
||||
class PlotConfig:
|
||||
def __init__(self) -> None:
|
||||
self.algo = "DQN" # 算法名称
|
||||
self.env_name = 'CartPole-v0' # 环境名称
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||||
'/'+curr_time+'/results/' # 保存结果的路径
|
||||
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||||
'/'+curr_time+'/models/' # 保存模型的路径
|
||||
self.save = True # 是否保存图片
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
''' 创建环境和智能体
|
||||
'''
|
||||
env = gym.make(cfg.env_name) # 创建环境
|
||||
env.seed(seed) # 设置随机种子
|
||||
n_states = env.observation_space.shape[0] # 状态数
|
||||
n_actions = env.action_space.n # 动作数
|
||||
agent = DQN(n_states,n_actions,cfg) # 创建智能体
|
||||
return env,agent
|
||||
|
||||
def train(cfg, env, agent):
|
||||
''' 训练
|
||||
'''
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
while True:
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
agent.memory.push(state, action, reward, next_state, done) # 保存transition
|
||||
state = next_state # 更新下一个状态
|
||||
agent.update() # 更新智能体
|
||||
ep_reward += reward # 累加奖励
|
||||
if done:
|
||||
break
|
||||
if (i_ep+1) % cfg.target_update == 0: # 智能体目标网络更新
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
if (i_ep+1)%10 == 0:
|
||||
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('完成训练!')
|
||||
return rewards, ma_rewards
|
||||
|
||||
def eval(cfg,env,agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||
# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0
|
||||
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
|
||||
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.eval_eps):
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
while True:
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
state = next_state # 更新下一个状态
|
||||
ep_reward += reward # 累加奖励
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f"回合:{i_ep+1}/{cfg.eval_eps}, 奖励:{ep_reward:.1f}")
|
||||
print('完成测试!')
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = DQNConfig()
|
||||
plot_cfg = PlotConfig()
|
||||
# 训练
|
||||
env,agent = env_agent_config(cfg,seed=1)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||
agent.save(path=plot_cfg.model_path) # 保存模型
|
||||
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
|
||||
# 测试
|
||||
env,agent = env_agent_config(cfg,seed=10)
|
||||
agent.load(path=plot_cfg.model_path) # 导入模型
|
||||
rewards,ma_rewards = eval(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards,ma_rewards, plot_cfg, tag="eval") # 画出结果
|
||||