update codes
This commit is contained in:
@@ -12,10 +12,10 @@ Environment:
|
||||
import torch.optim as optim
|
||||
from A2C.model import ActorCritic
|
||||
class A2C:
|
||||
def __init__(self,state_dim,action_dim,cfg) -> None:
|
||||
def __init__(self,n_states,n_actions,cfg) -> None:
|
||||
self.gamma = cfg.gamma
|
||||
self.device = cfg.device
|
||||
self.model = ActorCritic(state_dim, action_dim, cfg.hidden_size).to(self.device)
|
||||
self.model = ActorCritic(n_states, n_actions, cfg.hidden_size).to(self.device)
|
||||
self.optimizer = optim.Adam(self.model.parameters())
|
||||
|
||||
def compute_returns(self,next_value, rewards, masks):
|
||||
|
||||
@@ -13,19 +13,19 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.distributions import Categorical
|
||||
class ActorCritic(nn.Module):
|
||||
def __init__(self, num_inputs, num_outputs, hidden_size, std=0.0):
|
||||
def __init__(self, n_states, n_actions, hidden_dim):
|
||||
super(ActorCritic, self).__init__()
|
||||
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(num_inputs, hidden_size),
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_size, 1)
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(num_inputs, hidden_size),
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_size, num_outputs),
|
||||
nn.Linear(hidden_dim, n_actions),
|
||||
nn.Softmax(dim=1),
|
||||
)
|
||||
|
||||
|
||||
265
codes/A2C/task0_train.ipynb
Normal file
265
codes/A2C/task0_train.ipynb
Normal file
File diff suppressed because one or more lines are too long
@@ -1,8 +1,7 @@
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path = os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加路径到系统路径sys.path
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
@@ -17,17 +16,28 @@ from common.plot import plot_rewards
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
class A2CConfig:
|
||||
def __init__(self) -> None:
|
||||
self.algo='A2C'
|
||||
self.env= 'CartPole-v0'
|
||||
self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # path to save results
|
||||
self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # path to save models
|
||||
self.n_envs = 8
|
||||
self.gamma = 0.99
|
||||
self.hidden_size = 256
|
||||
self.algo='A2C' # 算法名称
|
||||
self.env_name= 'CartPole-v0' # 环境名称
|
||||
self.n_envs = 8 # 异步的环境数目
|
||||
self.gamma = 0.99 # 强化学习中的折扣因子
|
||||
self.hidden_dim = 256
|
||||
self.lr = 1e-3 # learning rate
|
||||
self.max_frames = 30000
|
||||
self.n_steps = 5
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
class PlotConfig:
|
||||
def __init__(self) -> None:
|
||||
self.algo = "DQN" # 算法名称
|
||||
self.env_name = 'CartPole-v0' # 环境名称
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
|
||||
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||||
'/'+curr_time+'/results/' # 保存结果的路径
|
||||
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||||
'/'+curr_time+'/models/' # 保存模型的路径
|
||||
self.save = True # 是否保存图片
|
||||
|
||||
|
||||
def make_envs(env_name):
|
||||
def _thunk():
|
||||
env = gym.make(env_name)
|
||||
@@ -57,11 +67,11 @@ def compute_returns(next_value, rewards, masks, gamma=0.99):
|
||||
|
||||
|
||||
def train(cfg,envs):
|
||||
env = gym.make(cfg.env) # a single env
|
||||
env = gym.make(cfg.env_name) # a single env
|
||||
env.seed(10)
|
||||
state_dim = envs.observation_space.shape[0]
|
||||
action_dim = envs.action_space.n
|
||||
model = ActorCritic(state_dim, action_dim, cfg.hidden_size).to(cfg.device)
|
||||
model = ActorCritic(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
|
||||
optimizer = optim.Adam(model.parameters())
|
||||
frame_idx = 0
|
||||
test_rewards = []
|
||||
@@ -112,9 +122,11 @@ def train(cfg,envs):
|
||||
return test_rewards, test_ma_rewards
|
||||
if __name__ == "__main__":
|
||||
cfg = A2CConfig()
|
||||
envs = [make_envs(cfg.env) for i in range(cfg.n_envs)]
|
||||
envs = SubprocVecEnv(envs) # 8 env
|
||||
plot_cfg = PlotConfig()
|
||||
envs = [make_envs(cfg.env_name) for i in range(cfg.n_envs)]
|
||||
envs = SubprocVecEnv(envs)
|
||||
# 训练
|
||||
rewards,ma_rewards = train(cfg,envs)
|
||||
make_dir(cfg.result_path,cfg.model_path)
|
||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
make_dir(plot_cfg.result_path,plot_cfg.model_path)
|
||||
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
|
||||
|
||||
Reference in New Issue
Block a user