add PPO
This commit is contained in:
94
codes/PPO/agent.py
Normal file
94
codes/PPO/agent.py
Normal file
@@ -0,0 +1,94 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-23 15:17:42
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-23 15:52:34
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import os
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
from PPO.model import Actor,Critic
|
||||
from PPO.memory import PPOMemory
|
||||
class PPO:
|
||||
def __init__(self, state_dim, action_dim,cfg):
|
||||
self.gamma = cfg.gamma
|
||||
self.policy_clip = cfg.policy_clip
|
||||
self.n_epochs = cfg.n_epochs
|
||||
self.gae_lambda = cfg.gae_lambda
|
||||
self.device = cfg.device
|
||||
self.actor = Actor(state_dim, action_dim).to(self.device)
|
||||
self.critic = Critic(state_dim).to(self.device)
|
||||
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.lr)
|
||||
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg.lr)
|
||||
self.memory = PPOMemory(cfg.batch_size)
|
||||
|
||||
def choose_action(self, observation):
|
||||
state = torch.tensor([observation], dtype=torch.float).to(self.device)
|
||||
dist = self.actor(state)
|
||||
value = self.critic(state)
|
||||
action = dist.sample()
|
||||
probs = torch.squeeze(dist.log_prob(action)).item()
|
||||
action = torch.squeeze(action).item()
|
||||
value = torch.squeeze(value).item()
|
||||
return action, probs, value
|
||||
|
||||
def update(self):
|
||||
for _ in range(self.n_epochs):
|
||||
state_arr, action_arr, old_prob_arr, vals_arr,\
|
||||
reward_arr, dones_arr, batches = \
|
||||
self.memory.sample()
|
||||
values = vals_arr
|
||||
### compute advantage ###
|
||||
advantage = np.zeros(len(reward_arr), dtype=np.float32)
|
||||
for t in range(len(reward_arr)-1):
|
||||
discount = 1
|
||||
a_t = 0
|
||||
for k in range(t, len(reward_arr)-1):
|
||||
a_t += discount*(reward_arr[k] + self.gamma*values[k+1]*\
|
||||
(1-int(dones_arr[k])) - values[k])
|
||||
discount *= self.gamma*self.gae_lambda
|
||||
advantage[t] = a_t
|
||||
advantage = torch.tensor(advantage).to(self.device)
|
||||
### SGD ###
|
||||
values = torch.tensor(values).to(self.device)
|
||||
for batch in batches:
|
||||
states = torch.tensor(state_arr[batch], dtype=torch.float).to(self.device)
|
||||
old_probs = torch.tensor(old_prob_arr[batch]).to(self.device)
|
||||
actions = torch.tensor(action_arr[batch]).to(self.device)
|
||||
dist = self.actor(states)
|
||||
critic_value = self.critic(states)
|
||||
critic_value = torch.squeeze(critic_value)
|
||||
new_probs = dist.log_prob(actions)
|
||||
prob_ratio = new_probs.exp() / old_probs.exp()
|
||||
weighted_probs = advantage[batch] * prob_ratio
|
||||
weighted_clipped_probs = torch.clamp(prob_ratio, 1-self.policy_clip,
|
||||
1+self.policy_clip)*advantage[batch]
|
||||
actor_loss = -torch.min(weighted_probs, weighted_clipped_probs).mean()
|
||||
returns = advantage[batch] + values[batch]
|
||||
critic_loss = (returns-critic_value)**2
|
||||
critic_loss = critic_loss.mean()
|
||||
total_loss = actor_loss + 0.5*critic_loss
|
||||
self.actor_optimizer.zero_grad()
|
||||
self.critic_optimizer.zero_grad()
|
||||
total_loss.backward()
|
||||
self.actor_optimizer.step()
|
||||
self.critic_optimizer.step()
|
||||
self.memory.clear()
|
||||
def save(self,path):
|
||||
actor_checkpoint = os.path.join(path, 'actor_torch_ppo.pt')
|
||||
critic_checkpoint= os.path.join(path, 'critic_torch_ppo.pt')
|
||||
torch.save(self.actor.state_dict(), actor_checkpoint)
|
||||
torch.save(self.critic.state_dict(), critic_checkpoint)
|
||||
def load(self,path):
|
||||
actor_checkpoint = os.path.join(path, 'actor_torch_ppo.pt')
|
||||
critic_checkpoint= os.path.join(path, 'critic_torch_ppo.pt')
|
||||
self.actor.load_state_dict(torch.load(actor_checkpoint))
|
||||
self.critic.load_state_dict(torch.load(critic_checkpoint))
|
||||
|
||||
|
||||
88
codes/PPO/main.py
Normal file
88
codes/PPO/main.py
Normal file
@@ -0,0 +1,88 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-22 16:18:10
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-23 15:52:52
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
sys.path.append(os.getcwd()) # add current terminal path to sys.path
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
import datetime
|
||||
from PPO.agent import PPO
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||||
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(RESULT_PATH)
|
||||
|
||||
class PPOConfig:
|
||||
def __init__(self) -> None:
|
||||
self.algo = 'PPO'
|
||||
self.batch_size = 5
|
||||
self.gamma=0.99
|
||||
self.n_epochs = 4
|
||||
self.lr = 0.0003
|
||||
self.gae_lambda=0.95
|
||||
self.policy_clip=0.2
|
||||
self.update_fre = 20 # frequency of agent update
|
||||
self.train_eps = 250 # max training episodes
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu
|
||||
|
||||
def train(cfg,env,agent):
|
||||
best_reward = env.reward_range[0]
|
||||
rewards= []
|
||||
ma_rewards = [] # moving average rewards
|
||||
avg_reward = 0
|
||||
running_steps = 0
|
||||
for i_episode in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
while not done:
|
||||
action, prob, val = agent.choose_action(state)
|
||||
state_, reward, done, _ = env.step(action)
|
||||
running_steps += 1
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, prob, val, reward, done)
|
||||
if running_steps % cfg.update_fre == 0:
|
||||
agent.update()
|
||||
state = state_
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(
|
||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
avg_reward = np.mean(rewards[-100:])
|
||||
if avg_reward > best_reward:
|
||||
best_reward = avg_reward
|
||||
agent.save(path=SAVED_MODEL_PATH)
|
||||
print('Episode:{}/{}, Reward:{:.1f}, avg reward:{:.1f}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,avg_reward,done))
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == '__main__':
|
||||
cfg = PPOConfig()
|
||||
env = gym.make('CartPole-v0')
|
||||
env.seed(1)
|
||||
state_dim=env.observation_space.shape[0]
|
||||
action_dim=env.action_space.n
|
||||
agent = PPO(state_dim,action_dim,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
|
||||
49
codes/PPO/memory.py
Normal file
49
codes/PPO/memory.py
Normal file
@@ -0,0 +1,49 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-23 15:30:46
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-23 15:30:55
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import numpy as np
|
||||
class PPOMemory:
|
||||
def __init__(self, batch_size):
|
||||
self.states = []
|
||||
self.probs = []
|
||||
self.vals = []
|
||||
self.actions = []
|
||||
self.rewards = []
|
||||
self.dones = []
|
||||
self.batch_size = batch_size
|
||||
def sample(self):
|
||||
batch_step = np.arange(0, len(self.states), self.batch_size)
|
||||
indices = np.arange(len(self.states), dtype=np.int64)
|
||||
np.random.shuffle(indices)
|
||||
batches = [indices[i:i+self.batch_size] for i in batch_step]
|
||||
return np.array(self.states),\
|
||||
np.array(self.actions),\
|
||||
np.array(self.probs),\
|
||||
np.array(self.vals),\
|
||||
np.array(self.rewards),\
|
||||
np.array(self.dones),\
|
||||
batches
|
||||
|
||||
def push(self, state, action, probs, vals, reward, done):
|
||||
self.states.append(state)
|
||||
self.actions.append(action)
|
||||
self.probs.append(probs)
|
||||
self.vals.append(vals)
|
||||
self.rewards.append(reward)
|
||||
self.dones.append(done)
|
||||
|
||||
def clear(self):
|
||||
self.states = []
|
||||
self.probs = []
|
||||
self.actions = []
|
||||
self.rewards = []
|
||||
self.dones = []
|
||||
self.vals = []
|
||||
44
codes/PPO/model.py
Normal file
44
codes/PPO/model.py
Normal file
@@ -0,0 +1,44 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-23 15:29:24
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-23 15:29:52
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import torch.nn as nn
|
||||
from torch.distributions.categorical import Categorical
|
||||
class Actor(nn.Module):
|
||||
def __init__(self,state_dim, action_dim,
|
||||
hidden_dim=256):
|
||||
super(Actor, self).__init__()
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(state_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, action_dim),
|
||||
nn.Softmax(dim=-1)
|
||||
)
|
||||
def forward(self, state):
|
||||
dist = self.actor(state)
|
||||
dist = Categorical(dist)
|
||||
return dist
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, state_dim,hidden_dim=256):
|
||||
super(Critic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(state_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
def forward(self, state):
|
||||
value = self.critic(state)
|
||||
return value
|
||||
BIN
codes/PPO/results/20210323-152513/ma_rewards_train.npy
Normal file
BIN
codes/PPO/results/20210323-152513/ma_rewards_train.npy
Normal file
Binary file not shown.
BIN
codes/PPO/results/20210323-152513/rewards_curve_train.png
Normal file
BIN
codes/PPO/results/20210323-152513/rewards_curve_train.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 63 KiB |
BIN
codes/PPO/results/20210323-152513/rewards_train.npy
Normal file
BIN
codes/PPO/results/20210323-152513/rewards_train.npy
Normal file
Binary file not shown.
BIN
codes/PPO/saved_model/20210323-152513/actor_torch_ppo.pt
Normal file
BIN
codes/PPO/saved_model/20210323-152513/actor_torch_ppo.pt
Normal file
Binary file not shown.
BIN
codes/PPO/saved_model/20210323-152513/critic_torch_ppo.pt
Normal file
BIN
codes/PPO/saved_model/20210323-152513/critic_torch_ppo.pt
Normal file
Binary file not shown.
@@ -1,53 +1,45 @@
|
||||
|
||||
[Eng](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README.md)|[中文](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README_cn.md)
|
||||
|
||||
## 写在前面
|
||||
|
||||
本项目用于学习RL基础算法,尽量做到:
|
||||
本项目用于学习RL基础算法,尽量做到: **注释详细**,**结构清晰**。
|
||||
|
||||
* 注释详细
|
||||
* 结构清晰
|
||||
|
||||
代码结构清晰,主要分为以下几个脚本:
|
||||
代码结构主要分为以下几个脚本:
|
||||
|
||||
* ```env.py``` 用于构建强化学习环境,也可以重新normalize环境,比如给action加noise
|
||||
* ```model.py``` 强化学习算法的基本模型,比如神经网络,actor,critic等
|
||||
* ```memory.py``` 保存Replay Buffer,用于off-policy
|
||||
* ```agent.py``` RL核心算法,比如dqn等,主要包含update和select_action两个方法,
|
||||
* ```main.py``` 运行主函数
|
||||
* ```params.py``` 保存各种参数
|
||||
* ```plot.py``` 利用matplotlib或seaborn绘制rewards图,包括滑动平均的reward,结果保存在result文件夹中
|
||||
* ```model.py``` 强化学习算法的基本模型,比如神经网络,actor,critic等
|
||||
* ```memory.py``` 保存Replay Buffer,用于off-policy
|
||||
* ```plot.py``` 利用matplotlib或seaborn绘制rewards图,包括滑动平均的reward,结果保存在result文件夹中
|
||||
* ```env.py``` 用于构建强化学习环境,也可以重新自定义环境,比如给action加noise
|
||||
* ```agent.py``` RL核心算法,比如dqn等,主要包含update和choose_action两个方法,
|
||||
* ```main.py``` 运行主函数
|
||||
|
||||
其中```model.py```,```memory.py```,```plot.py``` 由于不同算法都会用到,所以放入```common```文件夹中。
|
||||
|
||||
## 运行环境
|
||||
|
||||
python 3.7.9
|
||||
|
||||
pytorch 1.6.0
|
||||
|
||||
tensorboard 2.3.0
|
||||
|
||||
torchvision 0.7.0
|
||||
|
||||
gym 0.17.3
|
||||
python 3.7.9、pytorch 1.6.0、gym 0.18.0
|
||||
## 使用说明
|
||||
|
||||
本仓库使用到的环境信息请跳转[环境说明](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/env_info.md), 在各算法目录下也有相应说明(比如如何运行程序等)
|
||||
本repo使用到的[环境说明](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/env_info.md),在各算法目录下也有README说明
|
||||
|
||||
## 算法进度
|
||||
|
||||
| 算法名称 | 相关论文材料 | 备注 | 进度 |
|
||||
| :----------------------: | :---------------------------------------------------------: | :--------------------------------: | :--: |
|
||||
| On-Policy First-Visit MC | | | OK |
|
||||
| Q-Learning | | | OK |
|
||||
| SARSA | | | OK |
|
||||
| DQN | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | | OK |
|
||||
| DQN-cnn | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | 与DQN相比使用了CNN而不是全链接网络 | OK |
|
||||
| DoubleDQN | | | OK |
|
||||
| Hierarchical DQN | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | | |
|
||||
| PolicyGradient | | | OK |
|
||||
| A2C | | | OK |
|
||||
| DDPG | [DDPG Paper](https://arxiv.org/abs/1509.02971) | | OK |
|
||||
| TD3 | [Twin Dueling DDPG Paper](https://arxiv.org/abs/1802.09477) | | |
|
||||
| | | | |
|
||||
| 算法名称 | 相关论文材料 | 备注 | 进度 |
|
||||
| :----------------------------------------------------------: | :---------------------------------------------------------: | :----------------------------------------------------------: | :--: |
|
||||
| On-Policy First-Visit MC | | | OK |
|
||||
| Q-Learning | | | OK |
|
||||
| SARSA | | | OK |
|
||||
| DQN | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | | OK |
|
||||
| DQN-cnn | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | 与DQN相比使用了CNN而不是全链接网络 | OK |
|
||||
| DoubleDQN | | 效果不好,待改进 | OK |
|
||||
| Hierarchical DQN | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | | |
|
||||
| PolicyGradient | | | OK |
|
||||
| A2C | | | OK |
|
||||
| [PPO](https://github.com/JohnJim0816/rl-tutorials/tree/master/PPO) | [PPO paper](https://arxiv.org/abs/1707.06347) | [PPO算法实战](https://blog.csdn.net/JohnJim0/article/details/115126363) | OK |
|
||||
| DDPG | [DDPG Paper](https://arxiv.org/abs/1509.02971) | | OK |
|
||||
| TD3 | [Twin Dueling DDPG Paper](https://arxiv.org/abs/1802.09477) | | |
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -57,3 +49,5 @@ gym 0.17.3
|
||||
[RL-Adventure-2](https://github.com/higgsfield/RL-Adventure-2)
|
||||
|
||||
[RL-Adventure](https://github.com/higgsfield/RL-Adventure)
|
||||
|
||||
https://www.cnblogs.com/lucifer1997/p/13458563.html
|
||||
|
||||
Reference in New Issue
Block a user