This commit is contained in:
JohnJim0816
2021-03-23 16:05:16 +08:00
parent 1a44959fb4
commit 11d9b14f00
10 changed files with 305 additions and 36 deletions

94
codes/PPO/agent.py Normal file
View File

@@ -0,0 +1,94 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-23 15:17:42
LastEditor: John
LastEditTime: 2021-03-23 15:52:34
Discription:
Environment:
'''
import os
import numpy as np
import torch
import torch.optim as optim
from PPO.model import Actor,Critic
from PPO.memory import PPOMemory
class PPO:
def __init__(self, state_dim, action_dim,cfg):
self.gamma = cfg.gamma
self.policy_clip = cfg.policy_clip
self.n_epochs = cfg.n_epochs
self.gae_lambda = cfg.gae_lambda
self.device = cfg.device
self.actor = Actor(state_dim, action_dim).to(self.device)
self.critic = Critic(state_dim).to(self.device)
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.lr)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg.lr)
self.memory = PPOMemory(cfg.batch_size)
def choose_action(self, observation):
state = torch.tensor([observation], dtype=torch.float).to(self.device)
dist = self.actor(state)
value = self.critic(state)
action = dist.sample()
probs = torch.squeeze(dist.log_prob(action)).item()
action = torch.squeeze(action).item()
value = torch.squeeze(value).item()
return action, probs, value
def update(self):
for _ in range(self.n_epochs):
state_arr, action_arr, old_prob_arr, vals_arr,\
reward_arr, dones_arr, batches = \
self.memory.sample()
values = vals_arr
### compute advantage ###
advantage = np.zeros(len(reward_arr), dtype=np.float32)
for t in range(len(reward_arr)-1):
discount = 1
a_t = 0
for k in range(t, len(reward_arr)-1):
a_t += discount*(reward_arr[k] + self.gamma*values[k+1]*\
(1-int(dones_arr[k])) - values[k])
discount *= self.gamma*self.gae_lambda
advantage[t] = a_t
advantage = torch.tensor(advantage).to(self.device)
### SGD ###
values = torch.tensor(values).to(self.device)
for batch in batches:
states = torch.tensor(state_arr[batch], dtype=torch.float).to(self.device)
old_probs = torch.tensor(old_prob_arr[batch]).to(self.device)
actions = torch.tensor(action_arr[batch]).to(self.device)
dist = self.actor(states)
critic_value = self.critic(states)
critic_value = torch.squeeze(critic_value)
new_probs = dist.log_prob(actions)
prob_ratio = new_probs.exp() / old_probs.exp()
weighted_probs = advantage[batch] * prob_ratio
weighted_clipped_probs = torch.clamp(prob_ratio, 1-self.policy_clip,
1+self.policy_clip)*advantage[batch]
actor_loss = -torch.min(weighted_probs, weighted_clipped_probs).mean()
returns = advantage[batch] + values[batch]
critic_loss = (returns-critic_value)**2
critic_loss = critic_loss.mean()
total_loss = actor_loss + 0.5*critic_loss
self.actor_optimizer.zero_grad()
self.critic_optimizer.zero_grad()
total_loss.backward()
self.actor_optimizer.step()
self.critic_optimizer.step()
self.memory.clear()
def save(self,path):
actor_checkpoint = os.path.join(path, 'actor_torch_ppo.pt')
critic_checkpoint= os.path.join(path, 'critic_torch_ppo.pt')
torch.save(self.actor.state_dict(), actor_checkpoint)
torch.save(self.critic.state_dict(), critic_checkpoint)
def load(self,path):
actor_checkpoint = os.path.join(path, 'actor_torch_ppo.pt')
critic_checkpoint= os.path.join(path, 'critic_torch_ppo.pt')
self.actor.load_state_dict(torch.load(actor_checkpoint))
self.critic.load_state_dict(torch.load(critic_checkpoint))

88
codes/PPO/main.py Normal file
View File

@@ -0,0 +1,88 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-22 16:18:10
LastEditor: John
LastEditTime: 2021-03-23 15:52:52
Discription:
Environment:
'''
import sys,os
sys.path.append(os.getcwd()) # add current terminal path to sys.path
import gym
import numpy as np
import torch
import datetime
from PPO.agent import PPO
from common.plot import plot_rewards
from common.utils import save_results
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
os.mkdir(SAVED_MODEL_PATH)
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
os.mkdir(RESULT_PATH)
class PPOConfig:
def __init__(self) -> None:
self.algo = 'PPO'
self.batch_size = 5
self.gamma=0.99
self.n_epochs = 4
self.lr = 0.0003
self.gae_lambda=0.95
self.policy_clip=0.2
self.update_fre = 20 # frequency of agent update
self.train_eps = 250 # max training episodes
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu
def train(cfg,env,agent):
best_reward = env.reward_range[0]
rewards= []
ma_rewards = [] # moving average rewards
avg_reward = 0
running_steps = 0
for i_episode in range(cfg.train_eps):
state = env.reset()
done = False
ep_reward = 0
while not done:
action, prob, val = agent.choose_action(state)
state_, reward, done, _ = env.step(action)
running_steps += 1
ep_reward += reward
agent.memory.push(state, action, prob, val, reward, done)
if running_steps % cfg.update_fre == 0:
agent.update()
state = state_
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
avg_reward = np.mean(rewards[-100:])
if avg_reward > best_reward:
best_reward = avg_reward
agent.save(path=SAVED_MODEL_PATH)
print('Episode:{}/{}, Reward:{:.1f}, avg reward:{:.1f}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,avg_reward,done))
return rewards,ma_rewards
if __name__ == '__main__':
cfg = PPOConfig()
env = gym.make('CartPole-v0')
env.seed(1)
state_dim=env.observation_space.shape[0]
action_dim=env.action_space.n
agent = PPO(state_dim,action_dim,cfg)
rewards,ma_rewards = train(cfg,env,agent)
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)

49
codes/PPO/memory.py Normal file
View File

@@ -0,0 +1,49 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-23 15:30:46
LastEditor: John
LastEditTime: 2021-03-23 15:30:55
Discription:
Environment:
'''
import numpy as np
class PPOMemory:
def __init__(self, batch_size):
self.states = []
self.probs = []
self.vals = []
self.actions = []
self.rewards = []
self.dones = []
self.batch_size = batch_size
def sample(self):
batch_step = np.arange(0, len(self.states), self.batch_size)
indices = np.arange(len(self.states), dtype=np.int64)
np.random.shuffle(indices)
batches = [indices[i:i+self.batch_size] for i in batch_step]
return np.array(self.states),\
np.array(self.actions),\
np.array(self.probs),\
np.array(self.vals),\
np.array(self.rewards),\
np.array(self.dones),\
batches
def push(self, state, action, probs, vals, reward, done):
self.states.append(state)
self.actions.append(action)
self.probs.append(probs)
self.vals.append(vals)
self.rewards.append(reward)
self.dones.append(done)
def clear(self):
self.states = []
self.probs = []
self.actions = []
self.rewards = []
self.dones = []
self.vals = []

44
codes/PPO/model.py Normal file
View File

@@ -0,0 +1,44 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-23 15:29:24
LastEditor: John
LastEditTime: 2021-03-23 15:29:52
Discription:
Environment:
'''
import torch.nn as nn
from torch.distributions.categorical import Categorical
class Actor(nn.Module):
def __init__(self,state_dim, action_dim,
hidden_dim=256):
super(Actor, self).__init__()
self.actor = nn.Sequential(
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim),
nn.Softmax(dim=-1)
)
def forward(self, state):
dist = self.actor(state)
dist = Categorical(dist)
return dist
class Critic(nn.Module):
def __init__(self, state_dim,hidden_dim=256):
super(Critic, self).__init__()
self.critic = nn.Sequential(
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
def forward(self, state):
value = self.critic(state)
return value

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 KiB

Binary file not shown.

View File

@@ -1,53 +1,45 @@
[Eng](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README.md)|[中文](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README_cn.md)
## 写在前面
本项目用于学习RL基础算法尽量做到
本项目用于学习RL基础算法尽量做到: **注释详细****结构清晰**。
* 注释详细
* 结构清晰
代码结构清晰,主要分为以下几个脚本:
代码结构主要分为以下几个脚本:
* ```env.py``` 用于构建强化学习环境也可以重新normalize环境比如给action加noise
* ```model.py``` 强化学习算法的基本模型比如神经网络actorcritic
* ```memory.py``` 保存Replay Buffer用于off-policy
* ```agent.py``` RL核心算法比如dqn等主要包含update和select_action两个方法
* ```main.py``` 运行主函数
* ```params.py``` 保存各种参
* ```plot.py``` 利用matplotlib或seaborn绘制rewards图包括滑动平均的reward结果保存在result文件夹中
* ```model.py``` 强化学习算法的基本模型比如神经网络actorcritic等
* ```memory.py``` 保存Replay Buffer用于off-policy
* ```plot.py``` 利用matplotlib或seaborn绘制rewards图包括滑动平均的reward结果保存在result文件夹中
* ```env.py``` 用于构建强化学习环境也可以重新自定义环境比如给action加noise
* ```agent.py``` RL核心算法比如dqn等主要包含update和choose_action两个方法
* ```main.py``` 运行主函
其中```model.py```,```memory.py```,```plot.py``` 由于不同算法都会用到,所以放入```common```文件夹中。
## 运行环境
python 3.7.9
pytorch 1.6.0
tensorboard 2.3.0
torchvision 0.7.0
gym 0.17.3
python 3.7.9、pytorch 1.6.0、gym 0.18.0
## 使用说明
仓库使用到的环境信息请跳转[环境说明](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/env_info.md), 在各算法目录下也有相应说明(比如如何运行程序等)
repo使用到的[环境说明](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/env_info.md)在各算法目录下也有README说明
## 算法进度
| 算法名称 | 相关论文材料 | 备注 | 进度 |
| :----------------------: | :---------------------------------------------------------: | :--------------------------------: | :--: |
| On-Policy First-Visit MC | | | OK |
| Q-Learning | | | OK |
| SARSA | | | OK |
| DQN | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | | OK |
| DQN-cnn | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | 与DQN相比使用了CNN而不是全链接网络 | OK |
| DoubleDQN | | | OK |
| Hierarchical DQN | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | | |
| PolicyGradient | | | OK |
| A2C | | | OK |
| DDPG | [DDPG Paper](https://arxiv.org/abs/1509.02971) | | OK |
| TD3 | [Twin Dueling DDPG Paper](https://arxiv.org/abs/1802.09477) | | |
| | | | |
| 算法名称 | 相关论文材料 | 备注 | 进度 |
| :----------------------------------------------------------: | :---------------------------------------------------------: | :----------------------------------------------------------: | :--: |
| On-Policy First-Visit MC | | | OK |
| Q-Learning | | | OK |
| SARSA | | | OK |
| DQN | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | | OK |
| DQN-cnn | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | 与DQN相比使用了CNN而不是全链接网络 | OK |
| DoubleDQN | | 效果不好,待改进 | OK |
| Hierarchical DQN | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | | |
| PolicyGradient | | | OK |
| A2C | | | OK |
| [PPO](https://github.com/JohnJim0816/rl-tutorials/tree/master/PPO) | [PPO paper](https://arxiv.org/abs/1707.06347) | [PPO算法实战](https://blog.csdn.net/JohnJim0/article/details/115126363) | OK |
| DDPG | [DDPG Paper](https://arxiv.org/abs/1509.02971) | | OK |
| TD3 | [Twin Dueling DDPG Paper](https://arxiv.org/abs/1802.09477) | | |
@@ -57,3 +49,5 @@ gym 0.17.3
[RL-Adventure-2](https://github.com/higgsfield/RL-Adventure-2)
[RL-Adventure](https://github.com/higgsfield/RL-Adventure)
https://www.cnblogs.com/lucifer1997/p/13458563.html