add dqn
This commit is contained in:
@@ -5,7 +5,7 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:47:02
|
||||
@LastEditor: John
|
||||
@LastEditTime: 2020-06-14 11:23:04
|
||||
LastEditTime: 2020-08-19 16:55:54
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
@@ -14,17 +14,17 @@ import torch.nn.functional as F
|
||||
|
||||
class FCN(nn.Module):
|
||||
def __init__(self, n_states=4, n_actions=18):
|
||||
"""
|
||||
Initialize a deep Q-learning network for testing algorithm
|
||||
n_states: number of features of input.
|
||||
n_actions: number of action-value to output, one-to-one correspondence to action in game.
|
||||
""" 初始化q网络,为全连接网络
|
||||
n_states: 输入的feature即环境的state数目
|
||||
n_actions: 输出的action总个数
|
||||
"""
|
||||
super(FCN, self).__init__()
|
||||
self.fc1 = nn.Linear(n_states, 128)
|
||||
self.fc2 = nn.Linear(128, 128)
|
||||
self.fc3 = nn.Linear(128, n_actions)
|
||||
self.fc1 = nn.Linear(n_states, 128) # 输入层
|
||||
self.fc2 = nn.Linear(128, 128) # 隐藏层
|
||||
self.fc3 = nn.Linear(128, n_actions) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
# 各层对应的激活函数
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
return self.fc3(x)
|
||||
Reference in New Issue
Block a user