diff --git a/codes/dqn/dqn.py b/codes/dqn/dqn.py index 36dc2fd..d81107a 100644 --- a/codes/dqn/dqn.py +++ b/codes/dqn/dqn.py @@ -5,12 +5,16 @@ @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:50:49 @LastEditor: John -@LastEditTime: 2020-06-14 13:56:45 +LastEditTime: 2020-08-22 15:44:31 @Discription: @Environment: python 3.7.7 ''' '''off-policy ''' + + + + import torch import torch.nn as nn import torch.optim as optim @@ -20,79 +24,97 @@ import math import numpy as np from memory import ReplayBuffer from model import FCN - class DQN: - def __init__(self, n_states, n_actions, gamma=0.99, epsilon_start=0.9, epsilon_end=0.05, epsilon_decay=200, memory_capacity=10000, policy_lr=0.01,batch_size=128, device="cpu"): + def __init__(self, n_states, n_actions, gamma=0.99, epsilon_start=0.9, epsilon_end=0.05, epsilon_decay=200, memory_capacity=10000, policy_lr=0.01, batch_size=128, device="cpu"): self.actions_count = 0 - self.n_actions = n_actions - self.device = device + self.n_actions = n_actions # 总的动作个数 + self.device = device # 设备,cpu或gpu等 self.gamma = gamma + # e-greedy策略相关参数 self.epsilon = 0 self.epsilon_start = epsilon_start self.epsilon_end = epsilon_end self.epsilon_decay = epsilon_decay self.batch_size = batch_size - self.policy_net = FCN(n_states,n_actions).to(self.device) - self.target_net = FCN(n_states,n_actions).to(self.device) + self.policy_net = FCN(n_states, n_actions).to(self.device) + self.target_net = FCN(n_states, n_actions).to(self.device) + # target_net的初始模型参数完全复制policy_net self.target_net.load_state_dict(self.policy_net.state_dict()) self.target_net.eval() # 不启用 BatchNormalization 和 Dropout - self.optimizer = optim.Adam(self.policy_net.parameters(),lr=policy_lr) + # 可查parameters()与state_dict()的区别,前者require_grad=True + self.optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr) self.loss = 0 self.memory = ReplayBuffer(memory_capacity) - def select_action(self,state): - '''选择工作 + def select_action(self, state): + '''选择动作 Args: - state [array]: 状态 + state [array]: [description] Returns: - [array]: 动作 + action [array]: [description] ''' self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \ math.exp(-1. * self.actions_count / self.epsilon_decay) self.actions_count += 1 if random.random() > self.epsilon: with torch.no_grad(): - state = torch.tensor([state],device=self.device,dtype=torch.float32) # 先转为张量便于丢给神经网络,state元素数据原本为float64;注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价 - q_value = self.policy_net(state) # tensor([[-0.0798, -0.0079]], grad_fn=) - action = q_value.max(1)[1].item() + # 先转为张量便于丢给神经网络,state元素数据原本为float64 + # 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价 + state = torch.tensor( + [state], device=self.device, dtype=torch.float32) + # 如tensor([[-0.0798, -0.0079]], grad_fn=) + q_value = self.policy_net(state) + # tensor.max(1)返回每行的最大值以及对应的下标, + # 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0])) + # 所以tensor.max(1)[1]返回最大值对应的下标,即action + action = q_value.max(1)[1].item() else: action = random.randrange(self.n_actions) return action + def update(self): if len(self.memory) < self.batch_size: return + # 从memory中随机采样transition + state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample( + self.batch_size) + # 转为张量 + # 例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]]) + state_batch = torch.tensor( + state_batch, device=self.device, dtype=torch.float) + action_batch = torch.tensor(action_batch, device=self.device).unsqueeze( + 1) # 例如tensor([[1],...,[0]]) + reward_batch = torch.tensor( + reward_batch, device=self.device, dtype=torch.float) # tensor([1., 1.,...,1]) + next_state_batch = torch.tensor( + next_state_batch, device=self.device, dtype=torch.float) + done_batch = torch.tensor(np.float32( + done_batch), device=self.device).unsqueeze(1) # 将bool转为float然后转为张量 - state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size) - - state_batch = torch.tensor(state_batch,device=self.device,dtype=torch.float) # 例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]]) - action_batch = torch.tensor(action_batch,device=self.device).unsqueeze(1) # 例如tensor([[1],...,[0]]) - reward_batch = torch.tensor(reward_batch,device=self.device,dtype=torch.float) # tensor([1., 1.,...,1]) - next_state_batch = torch.tensor(next_state_batch,device=self.device,dtype=torch.float) - done_batch = torch.tensor(np.float32(done_batch),device=self.device).unsqueeze(1) # 将bool转为float然后转为张量 - # Compute Q(s_t, a) - the model computes Q(s_t), then we select the - # columns of actions taken. These are the actions which would've been taken - # for each batch state according to policy_net - q_values = self.policy_net(state_batch).gather(1, action_batch) # 等价于self.forward - # Compute V(s_{t+1}) for all next states. - # Expected values of actions for non_final_next_states are computed based - # on the "older" target_net; selecting their best reward with max(1)[0]. - # This is merged based on the mask, such that we'll have either the expected - # state value or 0 in case the state was final. - + # 计算当前(s_t,a)对应的Q(s_t, a) + # 关于torch.gather,对于a=torch.Tensor([[1,2],[3,4]]) + # 那么a.gather(1,torch.Tensor([[0],[1]]))=torch.Tensor([[1],[3]]) + q_values = self.policy_net(state_batch).gather( + dim=1, index=action_batch) # 等价于self.forward + # 计算所有next states的V(s_{t+1}),即通过target_net中选取reward最大的对应states next_state_values = self.target_net( - next_state_batch).max(1)[0].detach() # tensor([ 0.0060, -0.0171,...,]) - # Compute the expected Q values - expected_q_values = reward_batch + self.gamma * next_state_values * (1-done_batch[0]) - - # Compute Huber loss - # self.loss = nn.MSELoss(q_values, expected_q_values.unsqueeze(1)) - self.loss = nn.MSELoss()(q_values,expected_q_values.unsqueeze(1)) - # Optimize the model - self.optimizer.zero_grad() # zero_grad clears old gradients from the last step (otherwise you’d just accumulate the gradients from all loss.backward() calls). - self.loss.backward() # loss.backward() computes the derivative of the loss w.r.t. the parameters (or anything requiring gradients) using backpropagation. - for param in self.policy_net.parameters(): # clip防止梯度爆炸 + next_state_batch).max(1)[0].detach() # 比如tensor([ 0.0060, -0.0171,...,]) + # 计算 expected_q_value + # 对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward + expected_q_values = reward_batch + self.gamma * \ + next_state_values * (1-done_batch[0]) + # self.loss = F.smooth_l1_loss(q_values,expected_q_values.unsqueeze(1)) # 计算 Huber loss + self.loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算 均方误差loss + # 优化模型 + self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step + # loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分 + self.loss.backward() + for param in self.policy_net.parameters(): # clip防止梯度爆炸 param.grad.data.clamp_(-1, 1) - self.optimizer.step() # causes the optimizer to take a step based on the gradients of the parameters. + self.optimizer.step() # 更新模型 - + def save_model(): + pass + def load_model(): + pass \ No newline at end of file diff --git a/codes/dqn/main.py b/codes/dqn/main.py index 82b99f9..21852fb 100644 --- a/codes/dqn/main.py +++ b/codes/dqn/main.py @@ -5,7 +5,7 @@ @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:48:57 @LastEditor: John -@LastEditTime: 2020-07-20 23:02:16 +LastEditTime: 2020-08-22 18:02:56 @Discription: @Environment: python 3.7.7 ''' @@ -14,26 +14,27 @@ import torch from dqn import DQN from plot import plot import argparse + def get_args(): - '''模型建立好之后只需要在这里调参 + '''模型参数 ''' parser = argparse.ArgumentParser() - parser.add_argument("--gamma", default=0.99, type=float) # q-learning中的gamma parser.add_argument("--epsilon_start", default=0.95, type=float) # 基于贪心选择action对应的参数epsilon parser.add_argument("--epsilon_end", default=0.01, type=float) - parser.add_argument("--epsilon_decay", default=200, type=float) + parser.add_argument("--epsilon_decay", default=500, type=float) parser.add_argument("--policy_lr", default=0.01, type=float) parser.add_argument("--memory_capacity", default=1000, - type=int, help="capacity of Replay Memory") + type=int, help="capacity of Replay Memory") parser.add_argument("--batch_size", default=32, type=int, help="batch size of memory sampling") - parser.add_argument("--max_episodes", default=200, type=int) + parser.add_argument("--max_episodes", default=200, type=int) # 训练的最大episode数目 parser.add_argument("--max_steps", default=200, type=int) - parser.add_argument("--target_update", default=2, type=int, + # 将目标网络的更新频率改为1就是普通的dqn,大于1就是double dqn + parser.add_argument("--target_update", default=1, type=int, help="when(every default 10 eisodes) to update target net ") config = parser.parse_args() @@ -44,38 +45,34 @@ if __name__ == "__main__": cfg = get_args() # if gpu is to be used - device = torch.device("cuda" if torch.cuda.is_available() else "cpu") - env = gym.make('CartPole-v0').unwrapped - env.seed(1) + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu + env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要 + env.seed(1) # 设置env随机种子 n_states = env.observation_space.shape[0] n_actions = env.action_space.n agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start, - epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay,policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size) + epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size) rewards = [] moving_average_rewards = [] + ep_steps = [] for i_episode in range(1, cfg.max_episodes+1): - # Initialize the environment and state - state = env.reset() + state = env.reset() # reset环境状态 ep_reward = 0 - for t in range(1, cfg.max_steps+1): - # Select and perform an action - action = agent.select_action(state) - next_state, reward, done, _ = env.step(action) + for i_step in range(1, cfg.max_steps+1): + action = agent.select_action(state) # 根据当前环境state选择action + next_state, reward, done, _ = env.step(action) # 更新环境参数 ep_reward += reward - # Store the transition in memory - agent.memory.push(state,action,reward,next_state,done) - # Move to the next state - state = next_state - # Perform one step of the optimization (on the target network) - agent.update() + agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory + state = next_state # 跳转到下一个状态 + agent.update() # 每步更新网络 if done: break - - # Update the target network, copying all weights and biases in DQN + # 更新target network,复制DQN中的所有weights and biases if i_episode % cfg.target_update == 0: agent.target_net.load_state_dict(agent.policy_net.state_dict()) print('Episode:', i_episode, ' Reward: %i' % - int(ep_reward), 'Explore: %.2f' % agent.epsilon) + int(ep_reward), 'n_steps:', i_step, 'done: ', done,' Explore: %.2f' % agent.epsilon) + ep_steps.append(i_step) rewards.append(ep_reward) # 计算滑动窗口的reward if i_episode == 1: @@ -83,14 +80,17 @@ if __name__ == "__main__": else: moving_average_rewards.append( 0.9*moving_average_rewards[-1]+0.1*ep_reward) - + # 存储reward等相关结果 import os import numpy as np output_path = os.path.dirname(__file__)+"/result/" + # 检测是否存在文件夹 if not os.path.exists(output_path): os.mkdir(output_path) np.save(output_path+"rewards.npy", rewards) np.save(output_path+"moving_average_rewards.npy", moving_average_rewards) + np.save(output_path+"steps.npy", ep_steps) print('Complete!') plot(rewards) plot(moving_average_rewards, ylabel="moving_average_rewards") + plot(ep_steps, ylabel="steps_of_each_episode") diff --git a/codes/dqn/model.py b/codes/dqn/model.py index 7f8fc0f..a4642d8 100644 --- a/codes/dqn/model.py +++ b/codes/dqn/model.py @@ -5,7 +5,7 @@ @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:47:02 @LastEditor: John -@LastEditTime: 2020-06-14 11:23:04 +LastEditTime: 2020-08-19 16:55:54 @Discription: @Environment: python 3.7.7 ''' @@ -14,17 +14,17 @@ import torch.nn.functional as F class FCN(nn.Module): def __init__(self, n_states=4, n_actions=18): - """ - Initialize a deep Q-learning network for testing algorithm - n_states: number of features of input. - n_actions: number of action-value to output, one-to-one correspondence to action in game. + """ 初始化q网络,为全连接网络 + n_states: 输入的feature即环境的state数目 + n_actions: 输出的action总个数 """ super(FCN, self).__init__() - self.fc1 = nn.Linear(n_states, 128) - self.fc2 = nn.Linear(128, 128) - self.fc3 = nn.Linear(128, n_actions) + self.fc1 = nn.Linear(n_states, 128) # 输入层 + self.fc2 = nn.Linear(128, 128) # 隐藏层 + self.fc3 = nn.Linear(128, n_actions) # 输出层 def forward(self, x): - x = F.relu(self.fc1(x)) + # 各层对应的激活函数 + x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) return self.fc3(x) \ No newline at end of file diff --git a/codes/dqn/plot.py b/codes/dqn/plot.py index 062e9fd..4826515 100644 --- a/codes/dqn/plot.py +++ b/codes/dqn/plot.py @@ -5,19 +5,22 @@ @Email: johnjim0816@gmail.com @Date: 2020-06-11 16:30:09 @LastEditor: John -@LastEditTime: 2020-06-14 11:38:42 +LastEditTime: 2020-08-20 16:34:34 @Discription: @Environment: python 3.7.7 ''' import matplotlib.pyplot as plt +import pandas as pd +import seaborn as sns import numpy as np import os def plot(item,ylabel='rewards'): + sns.set() plt.figure() plt.plot(np.arange(len(item)), item) plt.title(ylabel+' of DQN') - plt.ylabel('rewards') + plt.ylabel(ylabel) plt.xlabel('episodes') plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png") plt.show() diff --git a/codes/dqn/result/moving_average_rewards.npy b/codes/dqn/result/moving_average_rewards.npy index b0e2a93..b770ce2 100644 Binary files a/codes/dqn/result/moving_average_rewards.npy and b/codes/dqn/result/moving_average_rewards.npy differ diff --git a/codes/dqn/result/moving_average_rewards.png b/codes/dqn/result/moving_average_rewards.png index f49d951..86469f8 100644 Binary files a/codes/dqn/result/moving_average_rewards.png and b/codes/dqn/result/moving_average_rewards.png differ diff --git a/codes/dqn/result/rewards.npy b/codes/dqn/result/rewards.npy index 7f7e3f9..2d0ff55 100644 Binary files a/codes/dqn/result/rewards.npy and b/codes/dqn/result/rewards.npy differ diff --git a/codes/dqn/result/rewards.png b/codes/dqn/result/rewards.png index c922896..106d8ed 100644 Binary files a/codes/dqn/result/rewards.png and b/codes/dqn/result/rewards.png differ diff --git a/codes/dqn/result/steps.npy b/codes/dqn/result/steps.npy new file mode 100644 index 0000000..a40309e Binary files /dev/null and b/codes/dqn/result/steps.npy differ diff --git a/codes/dqn/result/steps_of_each_episode.png b/codes/dqn/result/steps_of_each_episode.png new file mode 100644 index 0000000..408f4cd Binary files /dev/null and b/codes/dqn/result/steps_of_each_episode.png differ