update
This commit is contained in:
@@ -5,7 +5,7 @@ Author: John
|
|||||||
Email: johnjim0816@gmail.com
|
Email: johnjim0816@gmail.com
|
||||||
Date: 2020-09-11 23:03:00
|
Date: 2020-09-11 23:03:00
|
||||||
LastEditor: John
|
LastEditor: John
|
||||||
LastEditTime: 2021-04-29 17:01:08
|
LastEditTime: 2021-05-06 17:04:38
|
||||||
Discription:
|
Discription:
|
||||||
Environment:
|
Environment:
|
||||||
'''
|
'''
|
||||||
@@ -15,6 +15,7 @@ parent_path=os.path.dirname(curr_path)
|
|||||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||||
|
|
||||||
import gym
|
import gym
|
||||||
|
import torch
|
||||||
import datetime
|
import datetime
|
||||||
|
|
||||||
from envs.gridworld_env import CliffWalkingWapper
|
from envs.gridworld_env import CliffWalkingWapper
|
||||||
@@ -37,6 +38,8 @@ class QlearningConfig:
|
|||||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||||
self.epsilon_decay = 200 # e-greedy策略中epsilon的衰减率
|
self.epsilon_decay = 200 # e-greedy策略中epsilon的衰减率
|
||||||
self.lr = 0.1 # learning rate
|
self.lr = 0.1 # learning rate
|
||||||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu
|
||||||
|
|
||||||
|
|
||||||
def env_agent_config(cfg,seed=1):
|
def env_agent_config(cfg,seed=1):
|
||||||
env = gym.make(cfg.env)
|
env = gym.make(cfg.env)
|
||||||
@@ -48,6 +51,8 @@ def env_agent_config(cfg,seed=1):
|
|||||||
return env,agent
|
return env,agent
|
||||||
|
|
||||||
def train(cfg,env,agent):
|
def train(cfg,env,agent):
|
||||||
|
print('Start to train !')
|
||||||
|
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
|
||||||
rewards = []
|
rewards = []
|
||||||
ma_rewards = [] # moving average reward
|
ma_rewards = [] # moving average reward
|
||||||
for i_ep in range(cfg.train_eps):
|
for i_ep in range(cfg.train_eps):
|
||||||
@@ -67,11 +72,14 @@ def train(cfg,env,agent):
|
|||||||
else:
|
else:
|
||||||
ma_rewards.append(ep_reward)
|
ma_rewards.append(ep_reward)
|
||||||
print("Episode:{}/{}: reward:{:.1f}".format(i_ep+1, cfg.train_eps,ep_reward))
|
print("Episode:{}/{}: reward:{:.1f}".format(i_ep+1, cfg.train_eps,ep_reward))
|
||||||
|
print('Complete training!')
|
||||||
return rewards,ma_rewards
|
return rewards,ma_rewards
|
||||||
|
|
||||||
def eval(cfg,env,agent):
|
def eval(cfg,env,agent):
|
||||||
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||||||
# env = FrozenLakeWapper(env)
|
# env = FrozenLakeWapper(env)
|
||||||
|
print('Start to eval !')
|
||||||
|
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
|
||||||
rewards = [] # 记录所有episode的reward
|
rewards = [] # 记录所有episode的reward
|
||||||
ma_rewards = [] # 滑动平均的reward
|
ma_rewards = [] # 滑动平均的reward
|
||||||
for i_ep in range(cfg.eval_eps):
|
for i_ep in range(cfg.eval_eps):
|
||||||
@@ -90,6 +98,7 @@ def eval(cfg,env,agent):
|
|||||||
else:
|
else:
|
||||||
ma_rewards.append(ep_reward)
|
ma_rewards.append(ep_reward)
|
||||||
print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}")
|
print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}")
|
||||||
|
print('Complete evaling!')
|
||||||
return rewards,ma_rewards
|
return rewards,ma_rewards
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|||||||
@@ -5,12 +5,10 @@ Author: JiangJi
|
|||||||
Email: johnjim0816@gmail.com
|
Email: johnjim0816@gmail.com
|
||||||
Date: 2021-04-29 12:59:22
|
Date: 2021-04-29 12:59:22
|
||||||
LastEditor: JiangJi
|
LastEditor: JiangJi
|
||||||
LastEditTime: 2021-05-06 01:47:36
|
LastEditTime: 2021-05-06 16:58:01
|
||||||
Discription:
|
Discription:
|
||||||
Environment:
|
Environment:
|
||||||
'''
|
'''
|
||||||
|
|
||||||
|
|
||||||
import sys,os
|
import sys,os
|
||||||
curr_path = os.path.dirname(__file__)
|
curr_path = os.path.dirname(__file__)
|
||||||
parent_path = os.path.dirname(curr_path)
|
parent_path = os.path.dirname(curr_path)
|
||||||
|
|||||||
@@ -1,80 +0,0 @@
|
|||||||
#!/usr/bin/env python
|
|
||||||
# coding=utf-8
|
|
||||||
'''
|
|
||||||
Author: John
|
|
||||||
Email: johnjim0816@gmail.com
|
|
||||||
Date: 2021-03-11 17:59:16
|
|
||||||
LastEditor: John
|
|
||||||
LastEditTime: 2021-03-12 17:01:43
|
|
||||||
Discription:
|
|
||||||
Environment:
|
|
||||||
'''
|
|
||||||
import sys,os
|
|
||||||
sys.path.append(os.getcwd())
|
|
||||||
import datetime
|
|
||||||
from envs.racetrack_env import RacetrackEnv
|
|
||||||
from Sarsa.agent import Sarsa
|
|
||||||
from common.plot import plot_rewards
|
|
||||||
from common.utils import save_results
|
|
||||||
|
|
||||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
|
||||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
|
|
||||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
|
|
||||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
|
||||||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
|
||||||
os.mkdir(SAVED_MODEL_PATH)
|
|
||||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
|
|
||||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
|
|
||||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
|
||||||
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
|
||||||
os.mkdir(RESULT_PATH)
|
|
||||||
|
|
||||||
class SarsaConfig:
|
|
||||||
''' parameters for Sarsa
|
|
||||||
'''
|
|
||||||
def __init__(self):
|
|
||||||
self.epsilon = 0.15 # epsilon: The probability to select a random action .
|
|
||||||
self.gamma = 0.9 # gamma: Gamma discount factor.
|
|
||||||
self.lr = 0.2 # learning rate: step size parameter
|
|
||||||
self.n_episodes = 150
|
|
||||||
self.n_steps = 2000
|
|
||||||
|
|
||||||
def sarsa_train(cfg,env,agent):
|
|
||||||
rewards = []
|
|
||||||
ma_rewards = []
|
|
||||||
for i_episode in range(cfg.n_episodes):
|
|
||||||
# Print out which episode we're on, useful for debugging.
|
|
||||||
# Generate an episode.
|
|
||||||
# An episode is an array of (state, action, reward) tuples
|
|
||||||
state = env.reset()
|
|
||||||
ep_reward = 0
|
|
||||||
while True:
|
|
||||||
# for t in range(cfg.n_steps):
|
|
||||||
action = agent.choose_action(state)
|
|
||||||
next_state, reward, done = env.step(action)
|
|
||||||
ep_reward+=reward
|
|
||||||
next_action = agent.choose_action(next_state)
|
|
||||||
agent.update(state, action, reward, next_state, next_action,done)
|
|
||||||
state = next_state
|
|
||||||
if done:
|
|
||||||
break
|
|
||||||
if ma_rewards:
|
|
||||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
|
||||||
else:
|
|
||||||
ma_rewards.append(ep_reward)
|
|
||||||
rewards.append(ep_reward)
|
|
||||||
# if (i_episode+1)%10==0:
|
|
||||||
# print("Episode:{}/{}: Reward:{}".format(i_episode+1, cfg.n_episodes,ep_reward))
|
|
||||||
return rewards,ma_rewards
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
sarsa_cfg = SarsaConfig()
|
|
||||||
env = RacetrackEnv()
|
|
||||||
action_dim=9
|
|
||||||
agent = Sarsa(action_dim,sarsa_cfg)
|
|
||||||
rewards,ma_rewards = sarsa_train(sarsa_cfg,env,agent)
|
|
||||||
agent.save(path=SAVED_MODEL_PATH)
|
|
||||||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
|
||||||
plot_rewards(rewards,ma_rewards,tag="train",algo = "On-Policy First-Visit MC Control",path=RESULT_PATH)
|
|
||||||
|
|
||||||
|
|
||||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
After Width: | Height: | Size: 55 KiB |
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
After Width: | Height: | Size: 42 KiB |
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 41 KiB |
Binary file not shown.
Binary file not shown.
117
codes/Sarsa/task0_train.py
Normal file
117
codes/Sarsa/task0_train.py
Normal file
@@ -0,0 +1,117 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# coding=utf-8
|
||||||
|
'''
|
||||||
|
Author: John
|
||||||
|
Email: johnjim0816@gmail.com
|
||||||
|
Date: 2021-03-11 17:59:16
|
||||||
|
LastEditor: John
|
||||||
|
LastEditTime: 2021-05-06 17:12:37
|
||||||
|
Discription:
|
||||||
|
Environment:
|
||||||
|
'''
|
||||||
|
import sys,os
|
||||||
|
curr_path = os.path.dirname(__file__)
|
||||||
|
parent_path = os.path.dirname(curr_path)
|
||||||
|
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||||
|
|
||||||
|
import datetime
|
||||||
|
from envs.racetrack_env import RacetrackEnv
|
||||||
|
from Sarsa.agent import Sarsa
|
||||||
|
from common.plot import plot_rewards
|
||||||
|
from common.utils import save_results,make_dir
|
||||||
|
|
||||||
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||||
|
|
||||||
|
class SarsaConfig:
|
||||||
|
''' parameters for Sarsa
|
||||||
|
'''
|
||||||
|
def __init__(self):
|
||||||
|
self.algo = 'Qlearning'
|
||||||
|
self.env = 'CliffWalking-v0' # 0 up, 1 right, 2 down, 3 left
|
||||||
|
self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # path to save results
|
||||||
|
self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # path to save models
|
||||||
|
self.train_eps = 200
|
||||||
|
self.eval_eps = 50
|
||||||
|
self.epsilon = 0.15 # epsilon: The probability to select a random action .
|
||||||
|
self.gamma = 0.9 # gamma: Gamma discount factor.
|
||||||
|
self.lr = 0.2 # learning rate: step size parameter
|
||||||
|
self.n_steps = 2000
|
||||||
|
|
||||||
|
def env_agent_config(cfg,seed=1):
|
||||||
|
env = RacetrackEnv()
|
||||||
|
action_dim=9
|
||||||
|
agent = Sarsa(action_dim,cfg)
|
||||||
|
return env,agent
|
||||||
|
|
||||||
|
def train(cfg,env,agent):
|
||||||
|
rewards = []
|
||||||
|
ma_rewards = []
|
||||||
|
for i_episode in range(cfg.train_eps):
|
||||||
|
# Print out which episode we're on, useful for debugging.
|
||||||
|
# Generate an episode.
|
||||||
|
# An episode is an array of (state, action, reward) tuples
|
||||||
|
state = env.reset()
|
||||||
|
ep_reward = 0
|
||||||
|
while True:
|
||||||
|
# for t in range(cfg.n_steps):
|
||||||
|
action = agent.choose_action(state)
|
||||||
|
next_state, reward, done = env.step(action)
|
||||||
|
ep_reward+=reward
|
||||||
|
next_action = agent.choose_action(next_state)
|
||||||
|
agent.update(state, action, reward, next_state, next_action,done)
|
||||||
|
state = next_state
|
||||||
|
if done:
|
||||||
|
break
|
||||||
|
if ma_rewards:
|
||||||
|
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||||
|
else:
|
||||||
|
ma_rewards.append(ep_reward)
|
||||||
|
rewards.append(ep_reward)
|
||||||
|
if (i_episode+1)%10==0:
|
||||||
|
print("Episode:{}/{}: Reward:{}".format(i_episode+1, cfg.train_eps,ep_reward))
|
||||||
|
return rewards,ma_rewards
|
||||||
|
|
||||||
|
def eval(cfg,env,agent):
|
||||||
|
rewards = []
|
||||||
|
ma_rewards = []
|
||||||
|
for i_episode in range(cfg.eval_eps):
|
||||||
|
# Print out which episode we're on, useful for debugging.
|
||||||
|
# Generate an episode.
|
||||||
|
# An episode is an array of (state, action, reward) tuples
|
||||||
|
state = env.reset()
|
||||||
|
ep_reward = 0
|
||||||
|
while True:
|
||||||
|
# for t in range(cfg.n_steps):
|
||||||
|
action = agent.choose_action(state)
|
||||||
|
next_state, reward, done = env.step(action)
|
||||||
|
ep_reward+=reward
|
||||||
|
state = next_state
|
||||||
|
if done:
|
||||||
|
break
|
||||||
|
if ma_rewards:
|
||||||
|
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||||
|
else:
|
||||||
|
ma_rewards.append(ep_reward)
|
||||||
|
rewards.append(ep_reward)
|
||||||
|
if (i_episode+1)%10==0:
|
||||||
|
print("Episode:{}/{}: Reward:{}".format(i_episode+1, cfg.eval_eps,ep_reward))
|
||||||
|
print('Complete evaling!')
|
||||||
|
return rewards,ma_rewards
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
cfg = SarsaConfig()
|
||||||
|
env,agent = env_agent_config(cfg,seed=1)
|
||||||
|
rewards,ma_rewards = train(cfg,env,agent)
|
||||||
|
make_dir(cfg.result_path,cfg.model_path)
|
||||||
|
agent.save(path=cfg.model_path)
|
||||||
|
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
||||||
|
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||||
|
|
||||||
|
env,agent = env_agent_config(cfg,seed=10)
|
||||||
|
agent.load(path=cfg.model_path)
|
||||||
|
rewards,ma_rewards = eval(cfg,env,agent)
|
||||||
|
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
||||||
|
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Reference in New Issue
Block a user